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FILTERING AND SYSTEM IDENTIFICATION

Filtering and system identification are powerful techniques for building
models of complex systems in communications, signal processing, con-
trol, and other engineering disciplines. This book discusses the design
of reliable numerical methods to retrieve missing information in models
derived using these techniques. Particular focus is placed on the least
squares approach as applied to estimation problems of increasing com-
plexity to retrieve missing information about a linear state-space model.

The authors start with key background topics including linear
matrix algebra, signal transforms, linear system theory. and random
ariables. They then cover various estimation and identification meth-
ods in the state-space model. A broad range of filtering and system-
identification problems are analyzed, starting with the Kalman filter
and concluding with the estimation of a full model, noise statistics, and
state estimator directly from the data. The final chapter on the system-
identification cycle prepares the reader for tackling real-world problems.

With end-of-chapter exercises. MATLAB simulations and numerous
illustrations, this book will appeal to graduate students and researchers
in electrical, mechanical, and aerospace engineering. It is also a useful
reference for practitioners. Additional resources for this title, including
solutions for instructors, are available online at www.cambridge.org/
9780521875127.

MicHEL VERHAEGEN is professor and co-director of the Delft Cen-
ter for Systems and Control at the Delft University of Technology in the
Netherlands. His current research involves applying new identification
and controller design methodologies to industrial benchmarks, with par-
ticular focus on areas such as adaptive optics, active vibration control.
and global chassis control.

VINCENT VERDULT was an assistant professor in systems and control
at the Delft University of Technology in the Netherlands. from 2001 to
2005, where his research focused on system identification for nonlinear
state-space systems. He is currently working in the field of information
theory.



Preface

This book is intended as a first-year graduate course for engineering stu-
dents. It stresses the role of linear algebra and the least-squares problem
in the field of filtering and system identification. The experience gained
with this course at the Delft University of Technology and the University
of Twente in the Netherlands has shown that the review of undergrad-
uate study material from linear algebra. statistics. and system theory
makes this course an ideal start to the graduate course program. More
importantly, the geometric concepts from linear algebra and the central
role of the least-squares problem stimulate students to understand how
filtering and identification algorithms arise and also to start developing
new ones. The course gives students the opportunity to see mathematics
at work in solving engineering problems of practical relevance.
The course material can be covered in seven lectures:

(i) Lecture 1: Introduction and review of linear algebra (Chapters 1
and 2)
(ii) Lecture 2: Review of system theory and probability theory (Chap-
ters 3 and 4)
(iii) Lecture 3: Kalman filtering (Chapter 5)
(iv) Lecture 4: Estimation of frequency-response functions (Chap-
ter 6)
(v) Lecture 5: Estimation of the parameters in a state-space model
(Chapters 7 and 8)
(vi) Lecture 6: Subspace model identification (Chapter 9)
(vii) Lecture 7: From theory to practice: the system-identification cycle
(Chapter 10).

The authors are of the opinion that the transfer of knowledge is greatly
improved when each lecture is followed by working classes in which the
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students do the exercises of the corresponding classes under the supervi-
sion of a tutor. During such working classes each student has the oppor-
tunity to ask individual questions about the course material covered. At
the Delft University of Technology the course is concluded by a real-life
case study in which the material covered in this book has to be applied
to identify a mathematical model from measured input and output data.

The authors have used this book for teaching MSc students at Delft
University of Technology and the University of Twente in the Nether-
lands. Students attending the course were from the departments of elec-
trical, mechanical, and acrospace engineering, and also applied physics.
Currently, this book is being used for an introductory course on filtering
and identification that is part of the core of the MSc program Sys-
tems and Control offered by the Delft Center for Systems and Control
(http://www.dcsc.tudelft.nl). Parts of this book have been used in
the graduate teaching program of the Dutch Institute of Systems and
Control (DISC). Parts of this book have also been used by Bernard Han-
zon when he was a guest lecturer at the Technische Universitat Wien in
Austria, and by Jonas Sjoberg for undergraduate teaching at Chalmers
University of Technology in Sweden.

The writing of this book stems from the attempt of the authors to
make their students as enthusiastic about the field of filtering and sys-
tem identification as they themselves are. Though these students have
played a stimulating and central role in the creation of this book. its
final format and quality has been achieved only through close interac-
tion with scientist colleagues. The authors would like to acknowledge the
following persons for their constructive and helpful comments on this
book or parts thereof: Dietmar Bauer (Technische Universitit Wien,
Austria), Bernard Hanzon (University College Cork, Ireland), Gjerrit
Meinsma (University of Twente, the Netherlands), Petko Petkov (Tech-
nical University of Sofia, Bulgaria), Phillip Regalia (Institut National
des Télécommunications, France), Ali Sayed (University of California.
Los Angeles, USA), Johan Schoukens (Free University of Brussels, Bel-
gium), Jonas Sjoberg (Chalmers University of Technology, Sweden), and
Rufus Fraanje (TU Delft).

Special thanks go to Niek Bergboer (Maastricht University, the Nether-
lands) for his major contributions in developing the Matlab software and
guide for the identification methods described in the book. We finally
would like to thank the PhD students Paolo Massioni and Justin Rice
for help in proof reading and with the solution manual.



Notation and symbols

Afl
Al/'.z

diag(ay.as..... ay)
det(A)

range(A)

rank(A)

trace(A)

the set of integers

the set of positive integers

the set of complex numbers

the set of real numbers

the set of real-valued n-dimensional vectors
the set of real-valued m by n matrices
infinity

real part

imaginary part

belongs to

equal

approximately equal

end of proof

Kronecker product

the n x n identity matrix

the (i, 7)th entry of the matrix A

the ith row of the matrix A

the ith column of the matrix A

the transpose of the matrix A

the inverse of the matrix A

the symmetric positive-definite square root of the
matrix A

an n x n diagonal matrix whose (i,7)th entry is a;
the determinant of the matrix A

the column space of the matrix A

the rank of the matrix A

the trace of the matrix A
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Xiv Notation and symbols

vec(A) a vector constructed by stacking the colummns of
the matrix A on top of each other

| All2 the 2-norm of the matrix A

| Al the Frobenius norm of the matrix A

[x], the ith entry of the vector x

|| ||2 the 2-norm of the vector @

lim limit

min minimuinm

max maximum

sup supremum (least upper bound)

El-] statistical expected value

o(t) Dirac delta function (Definition 3.8 on page 53)

A(k) unit pulse function (Definition 3.3 on page 44)

s(k) unit step function (Definition 3.4 on page 44)

X ~ (m.o?) Gaussian random variable X with mean m and

. )
variance o=
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ARX Auto-Regressive with eXogeneous input
ARMAX  Auto-Regressive Moving Average with eXogeneous input
BIBO Bounded Input. Bounded Output

BJ Box—-Jenkins

CDF Cumulative Distribution Function
DARE Discrete Algebraic Ricatti Equation
DFT Discrete Fourier Transform

DTFT Discrete-Time Fourier Transform
ETFE Empirical Transfer-Function Estimate
FFT Fast Fourier Transform
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PEM Prediction-Error Method

Pl Past Inputs

PO Past Outputs

OE Output-Error

RMS Root Mean Square
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SVD Singular-Value Decomposition
WSS Wide-Sense Stationary
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Introduction

Making observations through the senses of the environment around us is
a natural activity of living species. The information acquired is diverse,
consisting for example of sound signals and images. The information
is processed and used to make a particular model of the environment
that is applicable to the situation at hand. This act of model building
based on observations is embedded in our human nature and plays an
important role in daily decision making.

Model building through observations also plays a very important role
in many branches of science. Despite the importance of making obser-
vations through our senses, scientific observations are often made via
measurement instruments or sensors. The measurement data that these
sensors acquire often need to be processed to judge or validate the exper-
iment, or to obtain more information on conducting the experiment.
Data are often used to build a mathematical model that describes the
dynamical properties of the experiment. System-identification methods
are systematic methods that can be used to build mathematical models
from measured data. One important use of such mathematical models
is in predicting model quantities by filtering acquired measurements.

A milestone in the history of filtering and system identification is
the method of least squares developed just before 1800 by Johann Carl
Friedrich Gauss (1777-1855). The use of least squares in filtering and
identification is a recurring theme in this book. What follows is a brief
sketch of the historical context that characterized the early development
of the least-squares method. 1t is based on an overview given by Biihler
(1981).

At the time Gauss first developed the least-squares method, he did
not consider it very important. The first publication on the least-squares



2 Introduction

method was published by Adrien-Marie Legendre (1752-1833) in 1806,
when Gauss had already clearly and frequently used the method much
earlier. Gauss motivated and derived the method of least squares sub-
stantially in the papers Theoria combinationis observationum erroribus
minimis obnoxiae I and 11 of 1821 and 1823. Part I is devoted to the the-
ory and Part Il contains applications, mostly to problems from astron-
omy. In Part 1 he developed a probability theory for accidental errors
(Zufallsfehler). Here Gauss defined a (probability distribution) function
() for the error in the observation x. On the basis of this function, the
product ¢(x)dx is the probability that the error falls within the interval
between @ and @+dx. The function ¢(x) had to satisfy the normalization

/ ﬂ o(x)dr = 1.

e ©

condition

The decisive requirement postulated by Gauss is that the integral

| /'x 22(a)da

o

attains a minimum. The selection of the square of the error as the most
suitable weight is why this method is called the method of least squares.
This selection was doubted by Pierre-Simon Laplace (1749 1827), who
had earlier tried to use the absolute value of the error. Computationally
the choice of the square is superior to Laplace’s original method.

After the development of the basic theory of the least-squares method,
Gauss had to find a suitable function ¢(x). At this point Gauss intro-
duced, after some heuristics, the Gaussian distribution

1 2

olx) = —e "
T

as a “natural” way in which errors of observation occur. Gauss never
mentioned in his papers statistical distribution functions different from
the Gaussian one. He was caught in his own success; the applications
to which he applied his theory did not stimulate him to look for other
distribution functions. The least-squares method was, at the beginning of
the nineteenth century, his indispensable theoretical tool in experimental
research; and he saw it as the most important witness to the connection
between mathematics and Nature.

Still today, the ramifications of the least-squares method in mathemat-
ical modeling are tremendous and any book on this topic has to narrow
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itself down to a restrictive class of problems. In this introductory text-
book on system identification we focus mainly on the identification of
linear state-space models from measured data sequences of inputs and
outputs of the engineering system that we want to model. Though this
focused approach may at first seem to rule out major contributions in the
field of system identification, the contrary is the case. It will be shown
in the book that the state-space approach chosen is capable of treating
many existing identification methods for estimating the parameters in a
difference equation as special cases. Examples are given for the widely
used ARX and ARMAX models (Ljung, 1999).

The central goal of the book is to help the reader discover how the
linear least-squares method can solve, or help in solving, different vari-
ants of the linear state-space model-identification problem. The linear
least-squares method can be formulated as a deterministic parameter-
optimization problem of the form

111@11/LT/L subject to y = Fa + pu, (1.1)

with the vector y € RY and the matrix F € RN*" given and with
x € R" the vector of unknown parameters to be determined. The solu-
tion of this optimization problem is the subject of a large number of
textbooks. Although its analytic solution can be given in a proof of only
a few lines, these textbooks analyze the least-squares solution from dif-
ferent perspectives. Examples are the statistical interpretation of the
solution under various assumptions on the entries of the matrix I and
the perturbation vector p, or the numerical solution in a computation-
ally efficient manner by exploiting structure in the matrix F. For an
advanced study of the least-squares problem and its applications in
many signal-processing problems, we refer to the book of Kailath et al.
(2000).

The main course of this book is preceded by three introductory chap-
ters. In Chapter 2 a refreshment survey of matrix linear algebra is given.
Chapter 3 gives a brief overview of signal transforms and linear system
theory for deterministic signals and systems. Chapter 4 treats random
variables and random signals. Understanding the system-identification
methods discussed in this book depends on a profound mastering of the
background material presented in these three chapters.

Often, the starting point of identifying a dynamical model is the deter-
mination of a predictor. Therefore, in Chapter 5, we first study the



