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STRUCTURAL ANALYSIS

A SOURCE OF LARGE ERRORS IN CALCULATING

SYSTEM FREQUENCIES

Robert M. Mains
Department of Civil Engineering
Washington University
St. Louis, Missouri

Attention is calléd to errors in system frequency calculations resulting
from the use of non-diagonal mass matrices with eigenvalue routines that
replace the mass matrix with its eigenvalues before proceeding to the

calculation of system frequencies.

The errors are illustrated in

several different solutions of an 18 degree-of-freedom system. What
can be done to avoid these errors is presented.

In some specific instances recently, the
author has observed errors in the determination
of system frequencies by factors of 3 to 10.
These errors were costly in replacement or
retrofit, so an investigation was undertaken
to determine the cause of the errors. In each
case, the Archer formulation of consistent
mass was computer generated, and so was the
stiffness matrix. These matrices were then
run thirough one of several widely used eigen-
value routines to get system frequencies and
mode shapes. If the stiffness and mass matrices
had been repetitive, all would have been well,
but in these cases both the stiffness and mass
matrices had considerable texture (more than
1000 to 1 variation in magnitudes). Further
examination of the eigenvalue routines revealed
thgt they used the device of formulating
M2 % K* M’k to achieve symmetry. For a
diagonal mass matrix, is no problem, but
with the non-diagonal mass matrices generated
in the programs, the eigenvalue routines first
found the eigenvalues of the mass matrix and
used the inverse square r;g& of these eigen-
values to get a diagonal . Unfortunately,
the routines ordered the eigenvalues of the
mass matrix and scrambled the coordinate order
in the process. Since the eigenvalues of the
mass matrix constitute a transformed set of
coordinates, they cannot be used to multiply
the untransformed stiffness coordinates.

To study this problem further, the system
shown in Fig. 1 was used. This system was
chosen for two reasons: first, the author had
used this system for several years as a check
problem on different computers with consistent
results; second, the stiffness had a range of
2250 to 1, and the mass had a range of 5400 to
1. If the foregoing hypothesis were correct,
this system should show it strongly. The main
diagonals of stiffness, diagonal mass, and

consistent (Archer) mass are shown in Table 1,
together with the eigenvalues of the consistent
mass matrix.

Fight different solutions for eigenvalues
were made with the results shown in Table 2, in
which /

Frequencies from Msk * K * Msk, with
EIGN5/RMM, Mp = diagonal mass matrix
by eyeball.

Column 1.

2, Frequencies from K * ML, with
EIGRF/IMSL, wholly real.

3. Frequencies from K * Mal, with
EIGRF/IMSL, Mc = -consistent mass per
Archer, wholly real.

4, TFrequencies from ME!i * K * ME*, with
EIGN5/RMM, = eigenvalues of
arranged in near natural order by
eyeball.

5. Frequencies from * K * H;k, with
EIGN5/RMM, Mp, = dlagonal mass
arranged in ascending order.

6. Frequencies from 5 » K * 4 , with
EIGN5/RMM, = elgenvalues of My
arranged in ascending order.

7. Frequencies from H;-{i * K * M;?, with
EIGN5/RMM, Mpp, = diagonal mass
arranged in descending order.

8. Frequencies from * K * _k, with
EIGN5/RMM, Hsn = elgenvalues of Mg
arranged in descending order.

EIGRF/IMSL "calculates eigenvalues and eigen-
vectors of a real, general matrix," not



required to be symmetric. Eigenvalues and
eigenvectors may be complex.

EIGN5/RMM calculates eigenvalues and eigen-
vectors from * K* M2, When M is not
diagonal, the eigeanvalues of M are used
instead and are ordered ascending or des-
cending.

NROOT, from the IBM system 360 Scientific Sub-
routine Package (SSRP), "finds the eigen-
values and eigenvectors of a real, square
non-symmetric matrix of the special form
B~1 % A, where both B and A are real, sym-
metric matrices and B is positive def-
inite." This routine calls EIGEN from the
SSRP to determine the eigenvalues of B,
orders them in descending order, and then
finds the eigenvalues of B™2 * A * B2,

In Table 2, the first two columns were
identical all the way. Columns 3 and 4 were
close to 1 and 2 for the lower third of the
frequencies and differed appreciably thereafter.
Columns 5 and 6 are close to each other in the
lower third, but a factor of 10 different from
1 and 2. The same comments apply to columns 7
and 8 as to 5 and 6.

The eigenvector sets for the various solu-
tions were too voluminous to be reproduced here

y

except for eigenvectors number one and two from
solutions 1 and 2, which are shown in Table 3.
While the frequencies from 1 and 2 were iden-
tical, the vector shapes were radically dif-
ferent, so that further calculations involving
the vector shapes (as for stress) would also

be different.

From the numbers in Table 2, it seems
clear that the use of a non-diagonal mass
matrix in dynamic system analysis can lead to
large errors if the eigenvalue routine uses
the eigenvalues of the masg matrix in place of
the matrix. If the K * M-l formulation is used
with a routine like EIGRF/IMSL, the eigenvalues
are correct, but the eigenvectors are not
orthogonal and subsequent calculations need to
be modified. Both O0f these problems can be
gotten around if the non-diagonal mass matrix
is replaced by its triangular decomposition
such that M-= L * LT, This replacement _permits
the eigenvalue solution of L1 % K* L-T, which
is symmetric and has orthogonal eigenvectors,
so that subsequent calculations can be carried
through the same as for a diagonal mass matrix.
The use of the triangular decomposition of the
mass matrix was called to the author's atten-
tion by Mr. Eugene Sevin of the Defense Nuclear
Agency, and the author gratefully acknowledges
this. .

TABLE 1
Diagonals of Matrices Used N
Diagonal Diagonal Diagonal of Eigenvalues
© of Mass Consistent of Consistent
Stiffness 2, Mass 2 Nass 2
1b/in 1b sec“/in 1b sec”/in 1b sec”/in

0.13491+07 C.T77700+00 0.57720+00 0.12211+00
0.98719+09 0.77700+01 0.77700+01 0.77447+01
0,.76931+407 0.77700400 0.57720+00. 0.12211+00
0.50572+09 0.77700+01 0.77700+01 0.77447+01
0.16010+08 ' 0.77700+00 0.57720+00 0.12211+00
0.52064+09 0.77700+01 0.77700+01 0,77447+01
0.21801407 0.12950+02 0,12950+02 0.13430+02
0.30418+10 0.42000+04 0.42000+04 0.42000+04
0.23992+407 0,12950+02 0,12950+02 0.13430+02
0.22293+10 0.42000+04 0.42000+04 0.42000+04
0.31847+408 0.12950+02 0.12950402 0.13430+02
0.12500+08 0.42000+04 0.42000+04 0.42000+04
0.13491407 0.77700+00 0.57720+00 0,.12277+00
0.98719409 0.77700+01 0.77700+01 0.82076+01
0.769314+07 0,77700+00 0.57720+00 -0.12277+00
0.50572+09 0,77700+01 0,77700+01 0,82076+01
0.16010408 0,77700+00 0.57720+00 0.12277+00
0.52064+09 0.77700+01 0.7770C+01 0.82076+01




1798.9
1799.2

TABLE 2
Frequencies for Different Solutions, Hz

3 4
8.50 8.51
15.95 16.31

16.00 16.70
37.27 42.61

124.2
126.5
140.0
584.3

587.5

723.9

784.5
3039.
3049.
3221.
3226.
3668,
3705.

127.1

2741

283.9
1186.
1192,
1264,
1301.
1334.
1369.
1786.
1814.
1837.
1861,

TABLE 3

5. 6 7
0.95 0.95 0.75
11.59 11.44  6.25
21.60  22.36 13.34
51.97 55.98 25.24
59.39 62.37 54.41
64.37 64.45 94.25
115.6 115.2 97.08
17.2 195.1 200.7
201.4 220.8 279.0
217.1 248.8 473.8
473.6 1188, 760.7
760.5  1356. 864.6

1378, 1830,  1009.

2317. 2374 | 2367.

3215, 3149. 3119,
4121, 10285. 4120.
4292.  10366. 4293.
5692. 14319. 5692.

Comparison of Eigenvectors
Bigenvector no.1

EIGRF

+0.47581-02
-0.13071-15
+0.11659-03
-0.20680-14
-0.12083-02
+0,82262-01
+0,88150-14
-0.45832-15
-0.24881-07
-0.36048-13
-0,15969+02
+0.47581-02
+0.12481-15
+0. 21998-1 5
-0.11659-03

' =0,22953-14

-0.12083-02

EIGN5
-0.24729-01

-0.60205-10.

-0.74144-09
-0.27964-02
-0.32534-07
-0.66189-03
-0.26185-01
-0,16893-10
=0,23894-08
-0.83066-05
-0,32728-07
+° . 1 5354-01
-0.24729-01
-0.15504-09
+0.42277-10
+0.60594-04
-0.32657-07
+0.62796-03

Eigenvector no.2

EIGRF

+0.55669-01
-0.38610-13
-0.94688-14
+0.58575-02
-0.11484-11
-0.99394-02
3+0.11770+01
+0.,17071-11
-0,20972-14
-0.36160-06
=0,19227-10
+0.21944+01
+0.55669-01
-0.38603-13
+0.91848-14
-0.58575-02
«0.11491=-11
-0.99394-02

EIGN5

+0,21024+00
-0,23599-08
-0.60161-08
+0.25372-01
-0.70346-06
+0.71654-02
+0.26594+00
+0.17459-09
‘70.91465-09
+0.70316-04
-0.70646-06
+0.15332-02
+0.21024+00
-0,23962-08
+0.57532-08
-0,22122-02
-0.70350-06
=0 L] ’-’,5 38"02

8
0.80
6.25
13.40
26.30
53.67
93.01

199.3
228.5
285.5
855.8
991 n1
1186.
1836-
2486.
3054.
10317.
10394.
14280.



DISCUSSION

Mr. Gupta, (IIT Research Institute): I was

curious as to which programs the two consultants
used. I am really skeptical in the sense that
there are many commercial programs which are
available and usually they do try to solve
problems and show that they are able to.solve
certain problems; but having a error of: the
order of magnitude which you showed certainly

is not the answer.

Dr. Mains: In the case of the floor system the
programs that were used and the people doing the
analysis are a part of one of the largest
dynamic analysis operations in the country.
They purport to do this kind of thing all day
every day and I know that they have an
automatic consistent mass calculator built

into their programs. Their programs also
substitute the eigenvalues of the mass matrix
in that particular case. The other used a
commercially available program that is widely
used around the country. I know of three
companies that use this program routinely for
dynamic analysis. One of these was the
contractor involved in the blast test that I
spoke of, another is a large company in the

St. Louis area, and the third is a very large
company not very many miles south of here.

I have observed this and I am pretty, sure of
my ground. )

Mr. Paz, (University of Louisville):

I don't know if the problem I am going to
present is directly related to yours but we
also had trouble with a consistent mass matrix
some years ago. I suggested that a student.
who was working on a master's thesis compare
results using the consistent mass, a lumped
mass, and also what might be called the exact
solution of the Bernoulli-Euler equations.

He found tremendous differences. To test the
programs he used simple numbers like units for
everything, such as the modulus of elasticity
and he found tremendous differences in computing
the consistent mass. So I investigated this
further and made a series expansion of the
exact solution; I found out that the consistent
mass is the first two terms of: ' the series
expansion, where one term is the stiffness and
the other term would be the mass that we used
in the consistent. By using these simple
numberg to test the programs he was out of the
range of convergence of the series so this
explained why the consistent mass gave wrong
answers. This might not be your case because
you checked this with another program, it is
probably a question of programming. But I
thought it might be of interest to know that
because with consistent mass we have" to be
careful in the convergence of the series that
actually represents these terms,

Mr. Mains: One of the things I try very hard
to do with my classes is to make sure that the
students understand what they are doing. So -

I make them go through dynamic analysis the
hard way with the hands-on operation of the
programs, so.that they know what is going on at
each step and so that they come out of it with
a gset of solved problems that they can use to
check out any black box they are subjected to
later on. When they go out from the University
to the job, quite routinely they are handed

a problem and told to put this on'the computer
and get some answers. They have no opportunity
to find out what the computer has on it.

I think this is a fairly widespread practice

I get feed back from it. Every student that
goes out and then comes back to visit a year
or two later tells me the same story.



) RESEARCH METHOD
AND GENERALIZED

ELEMENTS OF A LINEAR MECHANICAL

THE EIGENMODES
STRUCTURE

-

R. FILLOD Dr. Ing. and J. PIRANDA Dr. Ing.
Laboratoire de Mécanique Appliquée, associé au CNRS, Besangon, France

vior (e.g. fluttering of plames).

to give the most accurate results.

The determination of the eigenfrequencies, eigenmodes and generalized -
elements of a structure is fundameéntal in the study of its dynamic beha- “

‘0Of all the methods tested, those ‘based on the appropriation of modes seem

The experimental methods used today are often unreliable and do not al-
ways “guarantee that all‘the eigenmodes corresponding to a given frequency
range have been isolated. The method which we suggest does not present
these drawbracks., This method is based on the “appropriation method and
permits to determine the eigenvectors and generalized elements directly
by calculus from the forced responses to a given frequency.

I - DEFINITION OF APPROPRIATION

Appropriation consists of finding which sys-
tem of forces must be applied to a structure in
order to obtain :
- a response proportional to an eigenmode of the
associated conservative system ;

- the eigenfrequency corresponding to this mode.

Most experimental methods are based on the
fact that all points of the structure have the
same phase angle when the excitation is appro-
priate. . ARRIIaEY ETerTe o8 28

In the simplest mechods, the experimenter o
proceeds tentatively by modifying the level of
excitating forces and the frequency as best he
can in order to minimise the force and velocity
phase difference for all points. A method based
on this principle was tested by LEWIS and .WRISLAY
[1] at the M.I.T. in 1950.

A. DECK.[Z] from the ONERA has developed an
automatic method for appropriation which proceeds

by successive approximations assuming that fre-

quencies have been isolated. Basically the mimi=
mum of the in phase response relative to the ex-
citation is detected by varying each applied
force and the excitation fréquency successively,
This method offers the advantage of beiﬂg well-
suited to automation but it is unsuccessful whe-
never the eigenfrequencies are too close to one

another.

With the method developed by D. CLERC [3] appro-
priate forces can be calculated directly from a
set of p responses at a given frequency related
Eo‘p lineérly independent excitationvcoﬂfigura—
tions. Such a method: is systematic, it takes the
information from all pickuﬁs into account’'and two
close modes or more can easily be detected, but

a great amount of measurements and calculus is

required to determine one eigenmode.

TRIAL-NASH [4] had already used a-less sophisti-
cated form of this idea as early as 1958.

J.J. ANGELINT [5] introduced the matrix TV.F cal-
culated from the real part V of p responses to p



linearly independent excitation configurations
stored in the matrix F. He takes advantage of

the vanishing property of the TVF determinant
when the excitation frequency is similar to the
eigenfrequency. Such a method requires a great
deal number of measurements and only takes ac-
count of displacements at the excitation points.
Such methods have obvious drawbacks resulting ei-
ther from-exploitation (number of measurements
required) or lack of efficiency (eigenmodes unde-

tected in the case of close frequencies).

The aim of this paper is to develop a pro-
cess alloving all the eigenmodes near the excita-
tion frequency to be located, then secured from

a limited set of measurements.

11 - Preliminary considerations

In forced harmonic conditions, the move-
ment of a discrete linear system is defined by
the equation :

My o+ By® + Ky = £ . V%, (1

M, B, K being the mass, damping and stiffness ma-

trices respectively.

leads to
(X - w?M + jwB) y = £ (2)

To the damped initial system, we can asso-
ciate the conservative system defined by the ei-

genproblem
(K-AM) y=0, A=W, (3)

from which we deduce :

+ the modal matrix Y of eigenvectbrl vy

-~ the spectral matrix A of eigenvalues Av

According as the eigenvectors are arbitra-
rily normed (zv) or relatively to the mass matrix

(yv), we obtain the classical relations :

T

Tymy=g, Tyky=A, TzMzep , 1ZKZs u . A=y (4)

where y is the diagonal matrix of the generalized
masses, Y that of the generalized stiffness.

The forced displacements of the damped
system can be decomposed on the basis of the ei-
genvectors y, or z, of the associated conserva-
tive system. Then, we obtain :

or y(A)-zBTz.f (5)
with @ =(A-AE+§VX8) ! or § =( v -A u +i/Ab)"1(6)

b=1zBZ= u "28 u'/2(7)

y()=ya'y. £

B = TYBY

where B and b are the normed and non-nmormed gene-
ralized damping matrices. =

12 - Determination of appropriate forces

It is known [6] that a linear self-ad-
joint system can be appropriate to an eigen cir-
cular frequency wv‘vith a system of forces all
in phase (or anti phase). For exemple, at the
circular frequency w, the movement is described
by ¢
(K=A vmj/i WL

if z=Z , e, =z,

iR BE 0",

/87282 o, = /Kb o ="2 . £,

£,m37/8, T2 e 3K T Be,, (8)
If b is diagonal (Basile's hypothesis

verified [7]), this force £, will excite an eigen-
mode which is out of phase in relation to the ex~

(K-kvnbzv = 0 then

or still

citation whatever the frequency.
let z=2 . ¢

At the circular frequency w=yX, the res-
ponse z to the appropriate excitation will be de-
fined by :

(X~AM+jYAB)z = £,

hence :

Ty (kA4 VAB) Z.c = A e,
(Y =2 u +§/7b).c= J/AD e

b,
w
c= j/xv — e,
Yoy = My, + 3 Ay,




All the points of the structure vibrate in
phase. The phase difference ¢ between the move-

ment and excitation force is defined by :

b, B,

tg ¢ = - (€))
Xﬁ;;-qvv wx7)‘\) )

Reciprocally, assuming that a real force
vector £ is found, whose response to any circur

lar frequency is
y= YﬂTY . E=VE+ jf
withV . f=k W . £, and k = real constant,

thep f is an appropriate force to an eigenvector.

Indeed we have @

VaYR @ T¥
H-YJ(R)TY

R (Q) real part of Q
J (Q) imaginary part of 9.

Q diagonal matrix of general term
A-A=3 A8,y

e xZand
(AV-A) +A8vv

The above equality V.f=k.W.f leads to

A =A- ~ /2B
") T VWV

Y D Y.f = kY )
N\ N

EY 2
D = (AR #A8,

TY.E

S
Multiplying this equation by |- L 4
/X8

we obtain : W

[Y :X; A"l- kKE ]TY.f =0 (10)
AYY)

Therefore there is an eigenvalue Xv such that

A=A
k= 2
A8,
The corresponding eigenvector is of the
form
0
0
TY.f = o
(o]

Therefore, f is proportional to the appro-
priate force to the vth eigenmode. For instance

fv is defined by :

o ©
o O

§ T,
fv-MY/X Byv which leads to Yffv-/x B
0 0

Such result multiplied by an arbitrary cons-

ey -1
tant is the same as equation (8) because TY =MY.

Consequently, if a force f can be found so
that V.f = kW.f, this force is appropriate to an
eigenmode of the structure, and the displacement
y is proportional to this eigenmode. This proper-
ty constitute the basis of the appropriation cri-
terion suggested.

k can be a double eigenvalue :

A=A A - Xo

A 8\N 2 800

In that case two linearly independent eigen-
vectors will correspond to this double value of
k.

(o}

T T

Y.fv = a, and Y . EG = .
. (!o
0 0

The force f found will then be f, or fc or
more generally a linear combination of both.
Such indetermination can always be erased by se-

lecting another excitation frequency.

13 - Appropriation criterion when Basile's hvpo-

thesis is verified

p excitation configurations linearly inde-
pendant can be applied to the structure in b
points at a given w circular frequency and the
responses in phase and quadrature with the exci-
tation in n points be noted. The responses in
phase and in quadrature as well as the forces
can be rearranged under matrix form resulting in
matrices V(n,p), W(n,p) and F(p,p) respectively.
We can assume for instance F=E, E being the uni-



ty matrix.

With such linear system, a response to any
vector force "a" will be Va + jWa. An appropria-
te force to an eigenmode will be the.vector "av
such that :

V.av =k W a, (11)

In the case when the matrix of applied
forces F is not a unity matrix, we can measute
respenses in phase and quadrature V and W where
each column is a linear combination of the V and
W columns. We can therefore write them under the

form :

W =V. ? and % =W, % .

We try to find the values of k such that :

V Xv =k % gv for instance
vV¥E =kw¥y
Y v

. An appropriate force in this case 1s equi-
valent to 'i‘.a . For simplicity, we now assume
that . .

F=F=%k

In practice, we strictly cannot guarantee
n_n

equality (11). We try to find the vector "a" and

the scalar k such that V.a - kWa = € is minimum,

Let Tea = Ta (TV - kTw) (V- kW) a

To minimize lee it is necessary to compare
Tse to a norm taking into account the amplitude
of the movement. We are led to minimjze the pa-

rameter § .

5o tee _ Tav-iTw) (v-kwpa s
Ivall + Jwall  Ta"wwsTwwya
The extremes of § are given by the éeto of
y e : a6 .
the partial derivatives 5;; =0, i=l,.,.p and
2 . O which leads to
ok
(o= T Ty i T TyveTinJamo  (12)
T T
“a"WVa

Al Ay b dalnia

(12) is an eigenvalue problem in 6 non-linear in
relation to the parameter k. It suffices to find
which are the values k, of k making the smallest
eigenvalue § minimum. To each kv there is a cor-
responding eigenvector "av" which is the appro--
priate force to the vth eigenmode. We check that
the equation (13) is satisfied for each solution

found.

14 - Form of the appropriate forces such that

V.a = kW.a when Basile's hypothesis is not veri-
fied

In this case in order to obtain V.,a=kW.a at
A¢ A, » complex forces Fp*jF; must be applied.
We can show that the generalized forces appro-

h eigenmode defined by

priated to the vt
Tar, + jB,) = £ +j £,
R i R i

are of the form :

-/iblv : kviblv
-/Xva kvﬁva

fp = _/wa*o‘w-)‘“w) £y= k'fxbw*'(Yw_Mw) .
¢ i (14)

-/3b k/Ab

nv nv

k can be choosen such that f. is null when b 1s

diagonal, If for instance

: (15)

A bov ﬁ B,w

The generalized forces are then written :

"

Py Py
b2v ’ ) b2v
2
£y /A b, (14k°) fi-k/X 0 . (16)
bn\) th
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In pyactice biv(i $ V) << bvv, furthermore
in the proximity of A # )\) , k# 0 . Consequent-
ly, the imaginary force is negligible compared
to the real force, and the appropriation crite-
rion suggested may be applied at the proximity
of A = Av even when Basile's hypothesis is not

verified.
II - PRACTICAL CALCULATION OF APPROPRIATE FORCES

21 - § = £(k) curve plotting.’

The calculation is carried out as follownlB‘:
Given a ko value of k (for example ko = Q0), the
values of 8 solutions of the eigenproblem (12)
and the corresponding eigenvectors are deduced.
Then by increasing k and plotting § -’f(k). We
get the diagram : (Fig.l)

ds

kl k2 ‘ kv k

F1G.] Curves & = .£(k)

For each value k,, of k with § is minimum,
there is a corresponding force vector "av" ap~-
propriate to an eigenmode of the structure. Wav

is proportional to the eigenmode.

The appropriation to a mode is all the more
accurate as the corresponding value of § is smal-
ler.

Such calculation is comparatively long &nd
entails a lot of iterations to obtain a ky with

§ minimum,

A quicker alternative can be summarized as

follows : given an arbitrary initial values of

k, the eigenproblem (12) can be solved and a
new value k'; of k calculated from the eigenvec-
tor obtained using the relation' (13). The value
k'o obtained is very close to a k, value with §
minimum. The value k can be obtained rapidly

through iteration.

In practice, two or three iterations are
sufficient to obtain fairly accurate values of

kv.

The method still gives good results when
two eigenfrequencies or more are close or equal.
Two k values or more are found to wﬁich two ap-
propriate forces, or more, are associated.

A=A
V. ghows that even when

- The relation k =

two eigenvalues Ao and XQ pre.equal;'we still
have two separate values for k if vafBeo; Any
combination of the two obtdined vectors is an
eigenvector. The two determined eigenvectors cor-
respond to the two modes for which the damping
coefficient Bov is minimum.The above relatiomn
algo infers that it is possible to obtain a
double value for k even if Xc ¢ lv . In this,
case, two separate values for k are obtained by

changing the excitation frequency.

III - CALCULATION OF MASSES AND GENERALIZED DAM-
PINGS

The circular frequency w, = /X; , generali-
zed mass 80 the damping B have to be determi-

ned for each eigenmode.

For that, after locating a frequency and
calculating the appropriate corresponding force
a, ve apply this force to the 'structure. A step
to step predetermined frequency micro-sweeping

device records the system complex responses:
yw) = yplw) + i y; W .

31 - Eigen circular frequemcy w, and generalized

damping va determination.

. Using the following method to determine w,



and Qn’we obtained fairly satisfactory results.

For a set of value of A # Av , the appro-
priate forcegv is applied and

T

Vo o Y. A -
k()= T R i Av

Vi o+ Yy A . B

is plotted
W

Then k()A) = O gives A = Av and the slope
of the curve k(1) gives the generalized damping

va :

dk 1 l
(5= = ——— hence B
dA /X (_x) x_x

/W;.va b

32 -~ Generalized mass determination

a7

Generalized mass and damping can be obtai-
ned by the diagram of complex power [9] PR and

Pi as a function of A .

T T

Pp = 3, - Y Pp=a, .y
For ) # Av » it is known |4|‘that :
Pp = O, = N, (18)
P, = (2¢X§ - /M) L (19)
Hence for A -_Av 5

dP. o
Pp® Qui igr® T W, (20)
Py --bvvJX = vavv/—v from which

Py
W, = (21)

N By
A simple geometric diagram allows to check

the coherence of the results obtained (fig.2).
The experiment shows that :

=~ The curve k(A) (17) provides accurate va-
lues for Av and va since all the points where

pickups have been placed are taken into account.

and A given by (20)
are we1ght3g with errors whxch are due to the

~ The values of u

fact that ——x varies very quickly in the proxi-
mity of A = A 3

- The extreme of P“ is sllghtly modified

due to error effects in measurements and (21)

accurately,

enables one to obtain Hov

Pi'T‘v"‘v,

/x\’b\)\)

F16.2 Curves k(?:) and complex power

33 - Applications of the suggested method

Experimental checking of the method has
been carried out at the ONERA [10]. Fairly good
results have been obtained using a plane sub-
structure. Obtained results from numerical simu-
lation by the finite elements method of a system
having clese natural frequencies, are given here.
This system is a clamped, free beam folded up as
shown Fig.3. It can be shown that such a struc-
ture evinces aSuccession of eigen-frequencies by

pairs.

The eigenfrequencies in each pair are all

the closer as 11—12 gets smaller

2 :-l%
2 1
: (F
“ v

FI1G.3. Folded beam for example

The first four eigen-frequencies of the

10



®

system are :

F.=119Hz

3 F,=120,8Hz

Fl-|3.l Hz 4

F2-13.3Hz

In the finite elément method, three de-—
grees of freedom are associated to each mode
(transverse, longitudinal and angular displace-
ments) which leads to a 12 degrees freedom sys-

tem when four elements are concerned.

In the generalized damping matrix introdu-
ced the value of the quality factor Q-mv/va
of all modes is 20 or about and coupled termes

are added between the first three modes.

The submatrix B is represented below

4,05 -0,54 -0.27
B = |-0.54 3.24 ~-0.81
-0.27 -0.81 27

The simulated testing was carried out as
follow : at a given frequency, responses to
forces equal to 1 applied successively to each
transverse degree of freedom are computed. The
responses are stored into the V and W matrices
from which k = £()\) is plotted.

The following graph is obtained by selec-
ting an excitation frequency between the first

two eigenfrequencies (f = 13.2 Hz)
?5

0.2

kl k2 0.3 k
FI1G.4 . Curves § = F(k)

The two parabolic curves § = £(k) clearly
show that the system has two eigenfrequencies:
located on both sides of the excitation frequen—

cy. Then the appropriate forces to the two

modes can be computed.

Force a, appropriate to.the first eigen-
mode is computed at an excitation frequency
equal to.12.l3 Hz. A microsweeping from f=11,9Hz
to £=12.3 Hz gives the following curves (fig.5)"
for k, TaVa, Tava.

Similary, force a, appropriate to the se-
cond eigenmode is computed at an excitation fre-
quency equal to 13.27 Hz. A microsweeping from

f=13.1 to £f=13.5 Hz gives the results in fig.5.

A P By

FIG.5 k(\) and complex power. Modes 1 and 2

The generalized parameters of eigenmodes
are obtained from relations (17) and (21). The
following table allows the computed results to
bebcompared with the exact values. w, B, W, Y
¢i’ are the circular frequency, the generalized
damping and mass the displacement and the rota-
tion of the ith cross-section. It can be seen
that results are obtained with good accuracy
though the two modes are very close and strongly
coupled. It has also been verified that correct

results can be secured when error effects in mea-



surements are simulated.

First Mode Second Mode
Exact Computed | Exact Computed
Values Values Values values
w? [ 6775 6775 7060 7000
4.05 4,17 3.24 3.26
u {2.05 1073 2.107% | o.181 0.183
yy|-11.4 -11,1 332 332
¢| 0.130 |- o.128 -1.39 -1.37
Y, 7.8 7.91 131 134
¢, | 0.127 0.126 -1.27 -1.,25
) 26,2 26.2 -16.1 =12.4
¢3 0.123 0.122 -0.59 -0.57
¥4 8.63 8.65 14.6 16.6
¢¢ 0.1 0.1 0.07 0.09

IV - CONCLUSION

The suggested method has been tested twice
on a numerical computer, adding simulated errors
- of measurements and on plane substructure [10].
Even when two or more neighbouring eigenfrequen-
cies are very closed together, the appropriate
force can be easely calculated and the eigen~
modes restored with a negligible amount of er-

rors compatible with measurement accurary.’

As a conclusion, the originality of the me-
thod can be summarised as follows : a single set
of measurements with given frequencies enables
one to determine the appropriate force with se-
veral eigenmodes, and the determination of the
values of k such that § is minimum enables one

to locate these eigenfrequencies ;

- multiplie or neighbouring are automatical-
ly detected even though eigenmodes are strongly
coupled by damping ;

- if we agree to make a few measurements in
the proximity of an eigenfrequency, the diagram
in function of A of k, PR and Pi enables one to
determine :

- the eigen-circular frequency w, §
- the generalized damping va 3
= the generalized mass Wyt

12
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CALCULATION OF NATURAL FREQUENCIES AND
MODE SHAPES OF MASS LOADED AIRCRAFT STRUCTURES

P. Wayne Whaley
Air Force Flight Dynamics Laboratory
Wright-Patterson AFB, OH 45433

Aircraft optical packages
characteristics of the airframe.

mass simulations or

unloaded modes, is ted.

accuracy maintained.

curacy than the direct method. Galerkin
In addition, a matrix iteration scheme for computing
Results show that over 507% reduction in

executimtimeispossibleinompm:ingtheﬁrstfmmmdes,wimgood

are forced by the local randam vibration response .
Hence, the vibration characteristics must

be known by the designer of optical packages.
ment changes with the addition of the electro-optical system, it is neces-
to-predict the modified vibration envirorment,
ting structural analysis. This paper poses

's method gives unacceptable results.

However, since the environ-.
either by flight testing

loaded modes, given

INTRODUCTION

In the design of airbome optical pack-
ages, the angular and rectilinear vibration
response characteristics of the airframe repre-
smtﬁ:einputforc:lngﬁnctimto&\eoptical
Hence,-it is necessary to collect

for the aircraft structure on
to be mounted. The

5
:
%
3
g
E

better approach would be to calculate or esti-
mate the mass loaded random response, using
some relatively simple procedure, rather than
to rely on installing mass similations and then
conducting flight tests. This paper is an
four procedures for calculating the
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Finite element analysis is frequently
used to compute the loaded random vibration
response of aircraft structures. However, umn-
less a finite element model already exists,
such a s would be time . Even
if a finite element model did exist, the marmer
of mass loading would have to be included and
possible matrix size reduction techniques im-
plemented. In addition, there are persistent
problems concerming the choice of appropriate
forcing functions used as inputs. Thus, finite
element modeling might be more expensive and
time in some instances than conduc-
ting flight tests.

Three analytical techniques for computing
the mass loaded response of aircraft structures
are compared to the finite element answex.
Those analytical teclmiques.are: Galerkin's
method, a generalized coordinates , and
a direct method based on Hamilton's of
va'z:ﬁggact:lm. In addition, an alternative
method of the loaded response using
finite element ysis and knowing the unload-
ed response is presented.

ANALYSIS
Approximations to the solutions of



