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Preface

This book is the result of lectures given by Prof. Dr. J. Sonnenschein
at the Brussels University. It is an introductory course in complex analysis
of one complex variable. It contains sufficient material for about thirty
lectures.

The aim of the book is to introduce the principal notions and theorems
of complex analysis and to make the reader acquainted as quickly as
possible and with as much rigor as can be obtained in a short course, with
the knowledge necessary to use the most important results of complex
analysis in pure and applied mathematics.

An introductory course to complex analysis is not supposed to contain
original results. The only original features of this book lie in the presenta-
tion of the material.

Chapter 0 introduces the reader to the basic notions of topology which
are necessary to understand the following chapters. Those students who
have followed a course of topology may skip Chapter 0.

The following four chapters present the essentials of complex analysis.
It seems to us that four notions form the basis of complex analysis. In
each of the chapters 1 to 4 we have treated one of these notions: In the
first chapter the notion of complex differentiability of a function, in the
second one the property of a function that its integral over any closed
curve of a certain family of curves is zero. This property we called holo-
morphicity. In the third chapter we have introduced the notion “analytic”
for functions which possess about any point of a domain an expansion in a
Taylor series. The fourth property of functions, which is studied in the
fourth chapter, is a geometric property, namely the conformality of the
mapping.

These four notions which by their definition are quite different are
shown to imply each other, that is, to be equivalent.

In our definitions and proofs we have been influenced by many books
on the same subject, especially by the books of L. Ahlfors: Complex

vii



viii Preface

Analysis; H. Cartan: Theorie élementaire des fonctions analytiques d’une ou

plusieurs variables complexes; Z. Nehari: Conformal mapping; and others.

It is a pleasure for us to express our gratitude to Prof. Dr. J. P. Gossez

of the Brussels University for his suggestions and valuable remarks and to

Profs. Dr. Emil Herzog and Dr. Ta Li of California State Polytechnic

University who checked the manuscript and prepared the solutions for the

extensive Problem Section and the Teacher’s Manual which will form a
valuable addition to the text.

Jacob Sonnenschein

Simon Green



Contents

Preface vii

§1.

§2.

§3.

§4.

chapter 0
Algebraic and Topological Preliminaries
1
Some notions of set theory 1
1. Logical symbols 1
2. Sets 1
3. Functions 5
4. Sequences and countable sets 6
Sets with an algebraic structure 9
1. Groups 9
2. Rings and fields 10 '

3. Vector spaces 11

Sets with a topological structure—topological spaces
1. Definition of a topology 12

2. Continuous functions 15

3. Connectedness and the connectedness argument 17
4. Compactness 20

Metric spaces 22

1. Definitions 22

2. Normed vector spaces 24

3. Sequences in metric spaces; completeness 25

4. Continuity in metric spaces 28

5. Compactness in metric spaces 30

iii

12



iv Contents

chapter 1
Complex Differentiable Functions
37

§1. Summary of the course 37
§2. The complex numbers 38

1. Algebraic aspects 38

2. Geometric representation of complex numbers 39

3. Arguments of products and quotients 44

4. The Riemann sphere 47
§3. Topology of the complex plane 51

1. Neighborhoods and discs in the complex plane; open and closed

sets 51
2. Sequences in the complex plane 52
3. Compact sets in the complex plane 53
4. Connected sets and domains in the complex plane 55
5. Arcs and closed curves 58

§4. Differentiable functions 60

. Continuous functions 60

. Differentiability 63

. The Cauchy-Riemann equations 66

. Primitives 70

Geometric interpretation of the derivative 71
. Isomorphisms 73

chapter 2

Holomorphic Functions
77

§1. Homotopy and line integrals 77

1. Homotopy of closed curves with respect to a domain D 77
2. Line integrals 81
3. Properties of line integrals 86

§2. Cauchy’s theorem 93

1. Cauchy’s theorem for starlike domains 93
2. Cauchy’s theorem for general domains; residues 99

§3. Cauchy’s formula 106

1. The multivalued function log z 106
2. Index of closed curve 110



Contents v

3. Linear integral transformations 112
4. Cauchy’s formula 116

§4. Compactness of a bounded and closed subset of H(D) 120
§5. Harmonic functions 126
§6. The mean-value property and maximum modulus principle 129

chapter 3

Analytic Functions
133

§1. Power series 133

. Numerical series 133

. Series of functions and uniform convergence 136
Power series 137

. A function holomorphic on D is analytic on D 142
Cauchy’s inequalities 145

. Schwarz’s lemma 146

. Zeros of an analytic function 146

. Analytic continuation 149

. Permanency principle of functional relations 153

R I N N

§2. Laurent series 156

1. Definition of Laurent series 156

2. Isolated singularities and their classification 160
3. Meromorphic functions 164

4. The point at infinity 165

§3. Residues and their applications 169
1. The residue theorem 169

2. Applications of the residue theorem 172
3. The logarithmic residue 183
chapter 4

Conformal Mappings
191

§1. Conformal mappings 191

1. Definitions and relations 191
2. Mapping at points where f* =0 194
3. The open mapping theorem 196



vi Contents

§2. Homographies 199

1. Definitions and basic properties 199
2. Symmetry 204

§3. Riemann’s mapping theorem 208

Solutions to the Odd-Numbered Problems

Index 279

213



chapter o

Algebraic and Topological
Preliminaries

§1. Some notions of set theory

1. Logical symbols

We introduce here some logical symbols which we shall use throughout
this book.

Let S, and S, be two statements, then the symbol S; =S, means
that statement S, implies statement S,. The symbol S;<>S, means
S,=S, and S,=1S,, and we say that statement S; is equivalent to
statement S, .

Another way to express S, <> S, is to say S, holds if and only if S,
holds, or, briefly S; holds iff S, holds.. [Iff, with double f, is an
abbreviation for “if and only if.”]

The symbol 3 means “there exists,
“such that.”

”»

and the symbol > stands for

EXAMPLE

“J at least one integer x 33 < x < 3” means “there exists at least one

integer x such that 3 < x <3.”

The symbol V, an inverted 4, means “for all.”

2. Sets

We assume that the reader of this book is acquainted with elementary
set theory; in any case, we remind him of the following notations:

a € A, the element a belongs to the set A.
1



2 Chapter 0

a ¢ A, the element a does not belong to the set A.

Ac Bor Bo A, Ais asubset of B; that is,ae A=>a€ B.

A & B, A is not a subset of B. We shall write A = Bif A = Band B c A.
We shall use the symbol & for the void or empty set, {a} for the

set containing only the element a, {a,, a,, ..., a,} for the set containing
the elements a,, a,, as, ..., a,, and {a|P} for the set of all a having
property P.

AU B is the union of the sets A and B: AUB={alac 4 or a€ B}.
It is the set of all elements a which belong either to 4 or to B or to both

Figure 0.1

of them. A N B s the intersection of the sets Aand B: An B = {a|a € 4 and
a€ B}; An B is the set of all elements which belong to 4 and also to B.

ANB

Figure 0.2
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If € is a collection of sets C then the union or intersection of all sets C
belonging to € will be written:

Uc or NC

Ce¥ Ce¥
By B\A we mean the set of all elements belonging to B which do not
belong to A; we do not require B> A: B\A = {a|la€ B, a¢ A}. Clearly
B\A = B\(An B).

B\4

Figure 0.3

Let 4, A, and A, be three sets. We verify easily de Morgan’s duality
relations:

A\(4; L 4,) = (A\4,) N (4\4,)
and
A\(A4; N 4;) = (A\4;) L (4\4,)

Let us prove the first of the two relations: If x € A\(4; U A4,), then
xe A, x¢ A, and x ¢ A,. Therefore, x € A\4, and x € A\A4,, which shows
that x € (4\4,) N (4\4;). On the other hand, if x € (4\4,) N (4\4,), then
x€ A, x¢ Ay and x ¢ A,. It follows that xe A and x¢ A, U 4,, or
x € A\(A; v A4,).

The proof of the second duality relation is left to the reader.

DeMorgan’s relations may be generalized for an infinite collection %
of sets C in the following way:

AU €= () (4\C)
Ce¥ Ce¥
and

A\Co‘fc - CkE)‘K(A\C)
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Let A and B be two sets; we define the Cartesian product A x B to be
the set of ordered pairs (a, b) with a€ A and b € B:

A x B={(a,b)|a€ 4, be B}

We sometimes say that a is the first component and b the second component
of the pair (a, b).
Further on, we shall denote by—

the set of integers;

the set of positive integers, or natural numbers;

the set of rational numbers;

the set of real numbers, R* the set of positive real numbers, and
R the set of negative real numbers;

the set of complex numbers.

A "WOTWN

It follows from the definition of the Cartesian product that R x R = R?
is the set of pairs (x;, x,) with x, e R and x, € R, and

RP = (564, %5 5655 X} Kis X655 2,6 R}

Let A be a set. A subset S of A x A is called a relation in A. For
example, if A =R, then S ={(a, b)|b =a% ae R} = A x A is a relation
in A.

A relation in A is called an equivalence relation if it satisfies the follow-
ing three conditions:

(i) (@, a)eS VaeA  (reflexive)

(i) (a,b)eS=(b,a)eS  (symmetric)

(i) (a,b) and (b, c)eS=> (a,c)esS (transitive)

EXAMPLE

The set of pairs (@, b)e R x R with b > a defines the relation
“greater than,” but is not an equivalence relation since it is neither
reflexive nor symmetric.

EXAMPLE

Let A be the set of all intervals I = [a, b] = R, and denote by L(I)
the length of I. The set of pairs (I, I,)€ A x A for which L(I,) = L(I,)
defines an equivalence relation.
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3. Functions

Let A, B be two sets. We define a function, or mapping, f : A— B
(A into B) by associating with each element a € 4 one and only one element
b € B, which we denote by b = f(a).

A function or mapping f from A into B is thus a set of ordered
pairs (a,b) € A x B> Va e A Jexactly one ordered pair (g, b) in the set with
first component a. We call b = f(a) the value of a by f, or we say that
a is transformed into b by f. We call the set A of all first components
the domain of definition of f, and the set of the second components the
image of A under f, denoted by f(A); clearly f(A) = B. If the image of A
under f is B (f(4) = B)—that is, if for each b € B 3 an element a in A
with f(a) = b—then f'is said to be a mapping of A4 onto B.

We say that f is univalent if f(a,) = f(a,)=a, = a,.If f is onto and
univalent, then we say f is a one-to-one correspondence between A and B,
and that 4 and B are equivalent (in the sense of cardinality or set theory).
A trivial one-to-one mapping is the identity mapping 4 —»> A with
fla)=aVae A

Let f be a one-to-one mapping from A4 onto B; then to a given b € B
there corresponds one and only one element a€ A. This means b is
mapped by a certain function into 4. We denote this function by f~!
and call it the inverse function, or inverse mapping, of f. Hence, if f is
one-to-one, then f(a) =b= f"'(b) = a.

If A c A and B, c B, then we write f(A4,)={f(a)lae 4,} and
f~'(By)={a|f(a)e B,}. If f is a mapping A — B and g is a mapping
B— C, then we call the mapping of A - C which contains all pairs
(a,9(f(a)), with a € A4, f(a) € B, and g(f(a)) € C, the composition of g and
f, denoted by g - f. Evidently, {a, g(f(a))} is a subset of 4 x C. If fand g
are one-to-one, then g o f is also one-to-one, and its inverse function is
(gef)'=f"tog™ "

If f maps A— B and A, is a subset of A, then we call the set of
pairs (a, f(a)) with a € A, the restriction of f to A,, which is denoted by
f/A; and which maps A; — B. Clearly, if f is univalent, so is f/A4,.

EXAMPLE

Let xeR; then f =x? is a mapping R—R and contains the
ordered pairs (a, b) with a € R, b € R and b = a?, for example, (1, 1), (2, 4),
(0, 0), (=1, 1). This mapping is not from R onto R because x? >0, so
that f(R) does not cover R but only R* U {0}, where R* is the set of real
positive numbers. The function f is not univalent since we have f(—a) =
f(a), so there is no inverse function f~!.



6  Chapter 0

Let I be the interval {x|0 <x <2}; then f(I) is the interval
I, ={yl0<y<4}, and f~!(I,) is the interval {x|-2 < x <2}. The
restriction f/R* = x2/R* has an inverse function, namely, the positive
square root, and f/R~ also has an inverse function, namely, the negative
square root.

EXAMPLE

Let z be a complex number; then f = 1/z is a mapping which is
defined throughout C\{0}. f:C\{0} - C\{0} is a mapping onto which is
univalent since 1/z; = 1/z, =z, = z,; thus it is one-to-one. This mapping
is called the inversion mapping; it contains the ordered pairs (z, 1/z) with
z e C\{0}.

The inverse function f~! exists since f is univalent and onto; f~!
contains the ordered pairs (1/z, z) with l/z € C\{0}. It is clear that f~ 1o f
contains the pairs (z, £ ~!(f(z))) = (z, f~(1/2)) = (z, z) which defines the
identity mappmg Set 2 = 1/z; then f~! contains the pairs (2, 1/z'), the
same pairs as f. So f ! is the same function as f.

Problems
0.1.: Show that equivalence in the sense of set theory is an equivalence relation.
0.2.: Show that the distributive law holds for the two operations U and N:
AUu(BNnC)=(AuB)n (AU C)
and
N(BuUC)=(AnB)u(AnC)

4. Sequences and countable sets

DEFINITION A sequence is a set whose element are indexed by the
positive integers:

a,,a,,a,,...,a,,...=1{a,}

EXAMPLE

{a, = (—1)"} defines the sequence —1, 1, —1, 1, ....
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DEFINITION A set which is equivalent to the set of positive integers
is said to be countable.

Clearly every countable set can be indexed in the form of a sequence;
conversely, every sequence is countable since we have the one-to-one
correspondence n< a,.

EXAMPLE

1 The set of all positive even integers is countable and forms the
sequence
a,=2, a,=4, ..., a,=2n,

The set of all positive even integers is equivalent to the set of natural
numbers. The one-to-one correspondence is easily seen to be given by:

19 2, 3, 4, i n,
-1 1 1 !
2, 4, 6, 8, .... 2n,

The function f(n) = 2n which describes this one-to-one correspondence is
univalent, since 2n = 2m<>n = m. Note that in this example a set is
equivalent to one of its subsets. Clearly this is possible only for infinite sets.

2 The set of all integers is countable. Indeed, if we write the integers
in the following order, 0, 1, — 1,2, —2, ..., thena; =0,a,=1,a; = —1,
a, =2, ...,and in general a,, = nand a,,,, = —n.

Let us establish two important properties of countable sets.
1. Every infinite subset S’ of a countable set S is countable.

If $={ay, a,, ..., a,, ...}, then denote by a,’ the first element of S’
you encounter in the sequence S, by a,’ the second, and so on. Then
S ={a,, ay, ..., a,, ...} is countable.

EXAMPLE
The odd integers are countable since they are an infinite subset of all
the integers, which are countable.

2. The union of a countable family of countable sets is countable.

Let {S,, S,, ..., S,, ...} be the countable family of countable sets,
and a;; the jth element of S;. All the elements a;; may then be written in
the following order:
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Ay, Qg i3y eee

Ay1, Az9,d33,5 -

Q31 33, A33s - -

iy ey eens

We have listed the elements of S, in the first row, the elements of S, in the
second row, and so on. Now we can write all these elements in the form
of a sequence in the following way: a,, ay5, @33, 813, G332, G3y, .-, SUCh
that a,, preceeds a,, if m+n<r+s,or,incase m+n=r+s, if m<r.
The order used is illustrated as follows:

as; a3 =" 433 -7 Qs
- -
"‘— "f
E- g . . .
as; Q33 -~ a33
"’—,a/
a ’a’ a ® - . .
41/ 42
a5

. . . . . .

This method of ordering elements g;; into a sequence is called the dia-
gonal method.

COROLLARY  The Cartesian products P x P and Z. x Z are countable.

EXAMPLE

The set of rational numbers is countable. In fact, any rational number
is the ratio of two relatively prime integers p/q with g > 0. Hence, the set
of rational numbers is equivalent to an infinite subset of Z x Z, where Z
denotes the set of integers.

Problems

0.3.: Show that the set of real numbers is not countable.
0.4.: Show that the set of points of R? with rational coordinates is countable.
How could you generalize this result?




