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Preface

In 1963, when this book was first published under the title, Statistics for Psycholo-
gists, its aims were set forth as follows:

This book represents an attempt to give the elements of modern statistics in a
relatively nonmathematical form, but in somewhat more detail than is customary
in texts designed for psychologists, and with considerably more emphasis on the
theoretical rather than the applied aspects of the subject. It is designed as a text of
at least an intermediate level of difficulty. I have felt for some time that the serious
student in experimental psychology both needs and wishes to know somewhat
more of the language and concepts of theoretical statistics than is provided in the
usual ‘“‘cookbook’ of statistical methods. Granted that a real understanding and
appreciation of mathematical statistics requires a considerable degree of mathe-
matical training and sophistication, a great deal of statistical theory can be got
across to the serious student familiar only with elementary algebra, provided that
a relatively detailed exposition of the concepts accompanies the mathematical treat-
ment, and provided that the student is genuinely interested in acquiring a grasp of
this subject.

The use that the book has received in the social sciences generally over the years
apparently justifies my hope that there are students and teachers in many fields who
find this approach worthwhile. Essentially, the aims of this third edition remain the
same.

Nevertheless, when I set about preparing this new edition, my chief concern was {ii



to make it somewhat more concise. Among other things. having returned to regular iv
teaching after a 15-year hiatus spent in university administration, [ have recently PREFACE
grown much more sensitive to the need to make this text portable! To this end, I
have shortened a great many sections. and eliminated a fair number, while trying to
maintain the essential coverage of the earlier editions. Three entire chapters have
been omitted: the chapter on set and function theory covered material that is now
such a commonplace of school mathematics that it could hardly serve its original
purpose; the chapter on joint variables and independence could be split up among
other chapters: and the chapter on Bayesian methods. though still representing an
approach I believe to be potentially important for the social and behavioral sciences,
could not treat the subject fully in the limited space available. Furthermore, I am
neither so sanguine nor quite so choleric about certain issues as | was a few years
ago, and thus feel no need to waste further words on them. In all, then, a good many
things have been shortened or omitted, with, I trust, little damage to the coverage of
topics that this book attempts.

In addition, a good bit of reworking of the chapters on analysis of variance and on
regression has been done. The ready availability of computer programs for multiple
regression and for multivariate analysis generally is giving such methods a far more
ubiquitous role in research than they formerly enjoyed. In order to understand and to
take advantage of the many options these methods present, the student needs some
early groundwork in the general linear model, and especially in the essential connec-
tions between multiple regression and analysis of variance. Again. because of the
limitations of space and the level of preparation expected of students using this book,
the coverage of these topics has to be rather cursory. Any adequate treatment of
linear models and regression theory almost demands the use of matrix and vector
theory, and I was tempted to go in this direction. Although 1 have included a small
section on vector operations in Appendix C, in order to introduce the notions of
orthogonalization, I resisted the impulse to go further on the grounds that a treatment
by matrix theory belongs in another book, where the concepts can be introduced
early and thoroughly.

I have also tried to include more, and simpler, problems in this edition than in the
last. The 570 or so problems included represent an abosolute increase of 25 percent
over the second edition, and, for the chapters included in both editions, nearly a 50
percent increase in number. Solutions to the odd-numbered exercises are printed at
the end of the book. A separate answer key with solutions to the even-numbered
exercises is available to instructors who adopt the third edition.

The almost universal use of hand-held calculators also had some bearing on my’
decisions about what to include. Thus, a lengthy table of squares and square roots
now has about as much use in a statistics text as the multiplication tables. Although
I have retained some other tables, such as factorials and powers of e, these are now
such common operations on calculators that they probably are superfluous as well. A
technique such as the log-linear analysis in Chapter 15 looks computationally formi-
dable, but these computations are now relatively easy to do on a calculator with a
natural log function, which a great many have. Details of the computation of means,
variances, and even correlation coefficients become relatively less important in an
age when these operations are preprogrammed on many inexpensive calculators.

As before, this book is aimed primarily at the first-year graduate student in one of
the social or behavioral sciences. I have therefore assumed that the student probably



will have had at least one undergraduate statistics course, and that the present course v
will be followed by more specialized advanced courses, such as experimental design. PREFACE
However, I believe that the level is generally elementary enough to be followed by
an apt student without specific preparation in statistics, and yet advanced enough to
give the student a start in relatively simple research and data analysis. Ideally, the
text will be used in a two-semester course. However, many of the sections, especially
in the early part of the book, are sufficiently self-contained that they can be omitted
without serious loss of continuity. Thus, it is entirely possible for the teacher to cut
and tailor the topics covered to fit the requirements of a one-semester course, espe-
cially if the students already have some background in this area.

I wish to indicate my indebtedness and to offer my thanks to the very many stu-
dents and teachers who have contacted me through the years with comments and
suggestions for improvement of this text. I am especially grateful to all of those who
have identified and helped me to correct errors of various kinds. I hope that a new
generation of students and teachers will be willing to give me the same assistance.

Once again [ extend my sincere thanks to the late Professor E. S. Pearson and the
trustees of Biometrika for their kind permission to use tables from the Biometrika
Tables for Statisticians, (Vol. 1, 3rd ed.) and to Professor R. S. Burington and the
McGraw-Hill Company for graciously allowing me to reprint the table of binomial
probabilities from R. S. Burington and D. C. May, Handbook of Probability and
Statistics with Tables (2nd ed.). I would also like to thank the reviewers of this text:
Robert G. Malgady and Stanley A. Mulaik. Finally, to my wonderful, and wonder-
fully understanding, Palma, Leeann, and Scott, goes more appreciation than I can
ever adequately express.

W. L. H.
Austin, Texas
December 1980
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INTRODUCTION

ON THE NATURE AND THE ROLE OF INFERENTIAL STATISTICS

5

The word, *‘statistics,”” came into English from Latin and German, and ultimately
derives from the same Indo-European root which gave us *standing, status,’’
“*state,”’ and even “‘understand.’’ In the minds of most people, *‘statistics’” has a lot
in common with these related words, meaning roughly, a description of ‘*how things
are.’’ It is, of course, true that a part of the theory of statistics concerns effective
ways of summarizing and communicating masses of information which describe
some situation. This part of the overall theory and set of methods is usually known
as ‘‘descriptive statistics.”’

Although descriptive statistics form an important basis for dealing with data, a
major part of the theory of statistics is concerned with another question: How does
one go beyond a given set of data, and make general statements about the large body
of potential observations, of which the data collected represent but a sample? This is
the theory of inferential statistics, with which this book is mainly concerned.

Applications of inferential statistics occur in virtually all fields of research en-
deavor—the physical sciences, the biological sciences, the social sciences, engi-
neering, market and consumer research, quality control in industry, and so on, al-
most without end. Although the actual methods differ somewhat in the different
fields, the applications all rest on the same general theory of statistics. By examining
what the fields have in common in their applications of statistics we can gain a
picture of the basic problem studied in mathematical statistics. The major applica-
tions of statistics in any field all rest on the possibility of repeated observations or
experiments made under essentially the same conditions. That is, either the re-
searcher actually can observe the same process repeated many times, as in industrial 1
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quality control, or there is the conceptual possibility of repeated observation, as in 2
a scientific experiment that might, in principle, be repeated under identical condi- |NTRODUCTION
tions. However, in any circumstance where repeated observations are made, even
though every precaution is taken to make conditions exactly the same the results of
observations will vary, or tend to be different, from trial to trial. The researcher has
control over some, but not all, of the factors that make outcomes of observations
tend to differ from each other.

When observations are made under the same conditions in one or more respects,
but they give outcomes differing in other ways. then there is some wuncertainty con-
nected with observation of any given object or phenomenon. Even though some
things are known to be true about that object in advance of the observation, the
experimenter cannot predict with complete certainty what its other characteristics
will be. Given enough repeated observations of the same object or kind of object a
good bet may be formulated about what the other characteristics are likely to be, but
one cannot be completely sure of the status of any given object.

This fact leads us to the central problem of inferential statistics: in one sense,
inferential statistics is a theory about uncertainty, the tendency of outcomes to vary
when repeated observations are made under identical conditions. Granted that cer-
tain conditions are fulfilled, theoretical statistics permits deductions about the /ikeli-
hood of the various possible outcomes of observation. The essential concepts in
statistics derive from the theory of probability, and the deductions made within the
theory of statistics are, by and large, statements about the probability of particular
kinds of outcomes, given that initial, mathematical, conditions are met.

Mathematical statistics is a formal mathematical system. Any mathematical system
consists of these basic parts:

1. A collection of undefined “things” or “‘elements,” considered only as abstract
entities;

2. A set of undefined operations, or possible relations among the abstract ele-
ments;

3. A set of postulates and definitions, each asserting that some specific relation
holds among the various elements, the various operations, or both.

In any mathematical system the application of logic to combinations of the pos-
tulates and definitions leads to new statements, or theorems, about the undefined
elements of the system. Given that the original postulates and definitions are true,
then the new statements must be true. Mathematical systems are purely abstract, and
essentially undefined, deductive structures. In the first chapter we will see that the
abstract system known as the theory of probability has this character.

Mathematical systems are not really **about’” anything in particular. They are sys-
tems of statements about *‘things’’ having the formal properties given by the postu-
lates. No one may know what the original mathematician really had in mind to call
these abstract elements. Indeed. they may represent absolutely nothing that exists in
the real world of experience. and the sole concern may be in what one can derive
about the other necessary relations among abstract elements given particular sets of
postulates. It is perfectly true. of course, that many mathematical systems originated
from attempts to describe real objects or phenomena and their interrelationships:
historically, the abstract systems of geometry. school algebra, and the calculus grew



out of problems where something very practical and concrete was in the back of the
mathematician’s mind. However, as mathematics these systems deal with completely
abstract entities.

When a mathematical system is interpreted in terms of real objects or events, then
the system is said to be a mathematical model for those objects or events. Some-
what more precisely, the undefined terms in the mathematical system are identified
with particular, relevant, properties of objects or events; thus, in applications of
arithmetic, the number symbols are identified with magnitudes or amounts of some
particular property that objects possess, such as weight, or extent, or numerosity.
The system of arithmetic need not apply to other characteristics of the same objects,
as, for example, their colors. Once this identification can be made between the math-
ematical system and the relevant properties of objects, then anything that is a logical
consequence in the system is a true statement about objects in the model, provided,
of course, that the formal characteristics of the system actually parallel the real
characteristics of objects in terms of the particular properties considered. In short,
in order to be useful as a mathematical model, a mathematical system must have a
formal structure that **fits’’ at least one aspect of a real situation.

Probability theory and statistics are each both mathematical systems and mathe-
matical models. Probability theory deals with elements called ‘‘events,”” which are
completely abstract. Furthermore, these abstract things are paired with numbers
called ‘‘probabilities.”” The theory itself is the system of logical relations among
these essentially undefined things. The experimenter uses this abstract system as a
mathematical model: the experiment produces a real outcome, which is called an
event, and the model of probability theory provides a value which is interpreted as
the relative frequency of occurrence for that outcome. If the requirements of the
model are met, this is a true, and perhaps useful result. If the experiment really does
not fit the requirements of probability theory as a system, then the statement made
about the actual result need not be true. (This point must not be overstressed, how-
ever. We will find that often a statistical method can yield practically useful results
even when its requirements are not fully satisfied. Much of the art in applying statis-
tical methods lies in understanding when and how this is true.)

Mathematical systems such as probability theory and the theory of statistics are,
by their very nature, deductive. That is, formal assertions are postulated as true, and
then by logical argument true conclusions are reached. All well-developed theories
have this formal, logico-deductive character.

On the other hand, the problem of the empirical scientist is essentially different
from that of the logician or mathematician. Scientists search for general relations
among events; these general relations are those which can be expected to hold when-
ever the appropriate set of circumstances exists. The very name *‘empirical science”’
asserts that these laws shall be discovered and verified by the actual observation of
what happens in the real world of experience. However, no mortal scientist ever
observes all the phenomena about which a generalization must be made. Scientific
conclusions about what would happen for all of a certain class of phenomena always
come from observations of only a very few particular cases of that phenomenon.

The student acquainted with logic will recognize that this is a problem of induc-
tion. The rules of logical deduction are rules for arriving at true consequences from
true premises. Scientific theories are, for the most part, systems of deductions from
basic principles held to be true. If the basic principles are true, then the deductions

3
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must be true. However, how does one go about arriving at and checking the truth of 4
the initial propositions? The answer is, for an empirical science, observation and INTRODUCTION
inductive generalization—going from what is true of some observations to a state-
ment that this is true for all possible observations made under the same conditions.
Any empirical science begins with observation and generalization.

Furthermore. even after deductive theories exist in a science, experimentation is
used to check on the truth of these theories. Observations that contradict deductions
made within the theory are prima facie evidence against the truth of the theory itself.
Yet. how does the scientist know that the results are not an accident, the product of
some chance variation in procedure or conditions over which there is no control?
Would the result be the same in the long run if the experiment could be repeated
many times?

It takes only a little imagination to see that this process of going from the specific
to the general is a very risky one. Each observation the scientist makes is different
in some way from the next. Innumerable influences are at work altering— sometimes
minutely, sometimes radically—the similarities and differences the scientist ob-
serves among events. Controlled experimentation in any science is an attempt to
minimize at least part of the accidental variation or “‘error’’ in observation. Precise
techniques of measurement are aids to scientists in sharpening their own rather dull
powers of observation and comparison among events. So-called ‘‘exact sciences,”’
such as physics and chemistry, have thus been able to remove a substantial amount
of the unwanted variation among observations from time to time, place to place,
observer to observer, and hence are often able to make general statements about
physical phenomena with great assurance from the observation of quite limited num-
bers of events. Observations in these sciences can often be made in such a way that
the generality of conclusions is not a major point at issue. Here, there is relatively
little reliance on probability and statistics. (However, as even these scientists delve
into the molecular, atomic, and subatomic domain, negligible differences turn into
enormous unpredictabilities and statistical theories become an important adjunct to
their work.)

In the biological, behavioral, and social sciences, however, the situation is radi-
cally different. In these sciences the variations between observations are not subject
to the precise experimental controls that are possible in the physical sciences. Re-
fined measurement techniques have not reached the stage of development that they
have attained in physics and chemistry. Consequently, the drawing of general con-
clusions is a much more dangerous business in these fields, where the sources of
variability among living things are extremely difficulty to identify, measure, and
control. And yet the aim of the social or biological scientist is precisely the same as
that of the physical scientist—arriving at general statements about the phenomena
under study.

Faced with only a limited number of observations or with an experiment that can
be conducted only once, the scientist can reach general conclusions only in the form
of a “‘bet”” about what the true, long run, situation actually is like. Given only
sample evidence, the scientist is always unsure of the **goodness’ of any assertion
made about the true state of affairs. The theory of statistics provides ways to assess
this uncertainty and to calculate the probability of being wrong in deciding in a
particular way. Provided that the experimenter can make some assumptions about
what is true, then the deductive theory of statistics tells us how likely particular



results should be. Armed with this information, the experimenter is in a better po- 5
sition to decide what to say about the true situation. Regardless of what one decides ABOUT THIS BOOK
from evidence, it could be wrong; but deductive statistical theory can at least deter-
mine the probabilities of error in a particular decision.

In recent years, a branch of mathematics has been developed around this problem
of decision making under uncertain conditions. This is sometimes called **statistical
decision theory.” One of the main problems treated in decision theory is the choice
of a decision rule, or ‘‘deciding how to decide’” from evidence. Decision theory
evaluates rules for deciding from evidence in the light of what the decision maker
wants to accomplish. As we shall see in later chapters, mathematics can tell us wise
ways to decide how to decide under some circumstances, but it can never tell the
experimenter how a decision must be reached in any particular situation. The theory
of statistics supplies one very important piece of information to the experimenter:
the probability of sample results given certain conditions. Decision theory can supply
another: optimal ways of using this and other information to accomplish certain ends.
Nevertheless, neither theory tells the experimenter exactly how to decide—how to
make the inductive leap from observation to what is true in general. This is the
experimenter’s problem, and the answer must be sought outside of deductive math-
ematics, and in the light of what the experimenter is trying to do.

ABOUT THIS BOOK

This book is addressed to upper division or graduate students in the social and be-
havioral sciences. Such students are the people who will produce the significant
social and behavioral science research in years to come, and who will make up the
audience for much of this research. As a part of their professional equipment, these
students need to know statistics, at a level beyond an undergraduate course, and just
short of the specialized research design and methodology courses needed to round
out their graduate programs. Such students are the *‘you’" in this book.

You will soon discover that the main concern in this book is with the theory
underlying inferential methods, rather than with a detailed exposition of all the dif-
ferent methods social scientists and others find useful. The author had no intention
of writing a ‘‘cookbook’ that would equip students to meet every possible situa-
tion they might encounter. Many methods will be introduced, it is true, and we will,
in fact, discuss most of the elementary techniques for statistical inference currently
in use. However, in the past few years the concerns of the social scientist have
begun to grow increasingly complicated. Theory is growing, and social scientists are
turning their attention to new problems and techniques for data analysis that are
becoming much more sophisticated than in the past. The statistical analyses required
in many such studies are simply not in the *‘cookbooks.”” From all indications, this
trend will continue, and by the time that you, the student, are in the midst of your
professional career it may well be the case that entirely new statistical methods will
be required, replacing many of the methods currently found useful.

Furthermore, a true revolution has occurred in the past two decades, deeply af-
fecting the application and the teaching of statistical methodology. This has been
brought about by the new generations of computers, which are faster, more flexible,
and cheaper to use than anyone would have dreamed only a few years back. Large-
scale statistical analysis is now done by computer in almost all research settings.



