PRINCIPLES OF NEURAL SCIENCE SECOND EDITION

Edited by

ERIC R. KANDEL, M.D.

and

JAMES H. SCHWARTZ, M.D., PH.D.

R338 K16

PRINCIPLES OF NEURAL SCIENCE

SECOND EDITION

Edited by Mark to the state of the same same of a pack of

ERIC R. KANDEL, M.D.

and

JAMES H. SCHWARTZ, M.D., PH.D.

Center for Neurobiology and Behavior
College of Physicians & Surgeons of Columbia University

Howard Hughes Medical Institute

Art rendered by Jonathan Dimes

ELSEVIER

New York • Amsterdam • Oxford

Elsevier Science Publishing Co., Inc. 52 Vanderbilt Avenue, New York, New York 10017

Sole distributors outside the United States and Canada: Elsevier Science Publishers B.V.
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

 $\ \, \, {}^{}_{}$ 1985 by Elsevier Science Publishing Co., Inc. All rights reserved.

This book has been registered with the Copyright Clearance Center, Inc. For further information, please contact the Copyright Clearance Center, Salem, Massachusetts.

Library of Congress Cataloging in Publication Data

Main entry under title:

Principles of neural science.

Bibliography: p. Includes index.

1. Neurology. 2. Neurons. I. Kandel, Eric R. II. Schwartz, James H. [DNLM: 1. Behavior. 2. Nervous System Diseases. 3. Neurochemistry.

4. Neurons. 5. Neurophysiology. WL 102 P9547]

QP355.2.P76 1985

599'.0188 85-4563

ISBN 0-444-00944-2

Frontispiece quotation from *Hippocrates*, Vol. 2, translated by W. H. S. Jones, London and New York: William Heinemann and Harvard University Press, 1923, Chapter XVII: "The Sacred Disease," p. 175.

Director of Editing Barbara A. Conover
Coordinating Editor Diane Maass
Copy Editor Ruth Melnick
Design Edmée Froment
Layout Susan Schmidler
Art Services Virginia Kudlak
Art rendered by Jonathan Dimes

Department of Art as Applied to Medicine The Johns Hopkins University School of Medicine

Cover Design Paul Agule Design Compositor The Clarinda Company Printer and Binder Halliday Lithograph

Current printing (last digit) 10 9 8 7 6 5 4 3 2 1

Manufactured in the United States of America

Preface

Four major advances have occurred since the appearance of the first edition of Principles of Neural Science, and they have stimulated us to undertake this revision earlier than we had planned. The first advance has been an application of recombinant DNA and monoclonal antibody techniques to the nervous system. These methods have made accessible the solution of many neurobiological problems; for example, it is now possible to study the genome of the nerve cell fruitfully and to determine the complete structure of several membrane proteins important for signaling. Many new neuropeptides and their precursors have also been identified. The organization of the genes that encode them is being rapidly mapped. In addition, these techniques are beginning to elucidate the molecular details that distinguish different neuronal cell types. The second important advance is patch clamping, which has allowed investigators to explore in intact membranes the conformational changes that occur in single ion channels. This advance is bringing our understanding of the precise molecular changes underlying synaptic transmission to a new level. It also has important implications for the future development of pharmacological agents used to treat a wide range of clinical disorders. The third advance, the revolution in nerve cell labeling and cell tracing methods, has clarified many previously poorly understood relationships between brain structure, and behavior. Fourth, new, noninvasive methods of imaging have made it possible to study anatomical structures in the living human brain. Because of these last two advances, neuroanatomy can now be taught in an integrated manner with other segments of neural science.

In addition to major developments in methodology and technique, an important conceptual advance is that neural scientists have recognized that cell and molecular biology are crucial to their field. Although half a decade ago few neural scientists would have denied the importance of regarding the neuron in cell-biological terms, this approach to studying the nervous system was, until very recently, by no means central to the field, nor was it particularly useful for dealing with most day-to-day

problems, either in the experimental laboratory or in the clinic. Today the view that neural science is a special—and important—part of cell biology has become commonplace. Only when neuronal function is viewed as a consequence of the activities of specific molecular components within nerve cells can the great importance of the new advances in neural science be appreciated. As the boundaries of neural science expand, and with them our understanding of the mechanisms of perception, behavior, and learning, so must the way in which neural science is taught.

The modern era in neural science began about 35 years ago. In 1953, John Eccles reviewed results based on the first intracellular recordings from single nerve and muscle cells in a book he modestly entitled The Neurophysiological Basis of Mind. At that time, this title seemed overly bold because so little was then known about the mechanisms of behavior. What could be learned by sticking cells with microelectrodes that could possibly help in understanding the mind? As time passed, many of us have read this marvelous book again, and each time we are more impressed with its author's prophetic insight. Eccles' book pointed the field in the right direction: its major message is the necessity to study the brain in terms of its elementary units-individual nerve cells. Only by applying analytical techniques that can resolve neural processes at a cellular level can we develop a realistic and coherent understanding of how the brain works. Studying nerve cells with analytical techniques, however, is necessary but not sufficient for understanding how the brain works (how we think, behave, feel, act, and interact with one another). It is also essential to relate cellular function to behavior.

In the years since The Neurophysiological Basis of Mind was published, neural science clearly has not yet fulfilled the promise implied in Eccles' title. We hope to show, however, that neural science is beginning to give insight into some of the most difficult problems of cellular differentiation on the one hand, and some of the most profound problems of behavior on the other. For

example, considering that the brain is made up of a million million (1012) cells, it is remarkable how much has been learned about the functioning of the nervous system as a whole by looking at nerve cells one at a time. It has become apparent from cellular studies that the building blocks of different regions of the vertebrate nervous system, and indeed of the nervous systems of all animals, are quite similar. What distinguishes one brain region from another and one brain from the next are the number of building blocks and the ways they are interconnected. Moreover, by applying a cellular approach to different sensory systems of the brain, it is possible to gain insight into how visual and other sensory stimuli are sorted out and transformed at various brain levels and how these regions contribute to perception. These cellular studies show that the brain does not simply replicate the external world or project it onto a tabula rasa, but begins at the lowest levels of the sensory system to abstract and represent reality according to its own rules by encoding it into informational signals. These developments in neural science press upon the borders of experimental psychology. We hope that the merger of neural science and experimental psychology, which we encourage in this text, will in turn lead to further advances in understanding behavior and learning.

The second edition is again designed as an introductory text for students of biology, behavior, and medicine. A major change in this edition is a more extensive treatment of neuroanatomy. The growth of functional neuroanatomy has made it possible both to describe the principles that underlie the anatomical structure of each system of the brain and to discuss each structure in terms of its physiology on the one hand, and its role in

behavior and disease on the other.

Our goal in this textbook is to convey the interest and excitement surrounding the application of cell- and molecular-biological techniques to the study of the nervous system, how the brain develops, and how it controls behavior. This text also emphasizes those neurological and behavioral disorders that are both instructive scientifically and important clinically. We have again attempted to be selective and to stress the major principles that emerge from the study of the nervous system without becoming lost in detail. Toward this end we have divided the book into eleven parts, covering the following topics:

- 1. An overall view of the brain,
- 2. The cell and molecular biology of the neuron,
- 3. The mechanisms of synaptic transmission,
- 4. The anatomical organization of the nervous system,
- 5. The cellular basis of perception,
- 6. The control of movement,
- 7. The brain stem and reticular core,
- 8. Motivation and homeostasis,
- Localization of higher cognitive functions, and the disorders of language, thought, and affect,
- 10. Development and the emergence of behavior, and
- 11. Genes, experience, and the mechanisms behavior.

In addition, we include an appendix on brain fluids, neuroophthalmology, and a discussion of current flow in neurons together with some practice problems for self study.

Our ultimate aim is to integrate information from experimental studies with practical areas of interest. For the general student, it will be important to see how basic information about the nervous system can be applied to psychology. For the student of medicine, integration with the clinical fields of neurology and psychiatry is of prime importance. Integration with neurology is relatively easy; neurology and neural science have long been interdependent. The bridge to psychiatry is more difficult. Thus far, neural science has taken only rudimentary steps toward understanding the mind. We have therefore tried to provide a systematic introduction to the biological basis of behavior and higher functions. Behavior is one of the last frontiers in biology at which we still stand in relative ignorance. We hope that this text will encourage the student to view behavior with the same combined social and biological perspective that serves so well in other areas of biology and medicine.

The past 35 years have seen splendid progress in the techniques and practice of neurology and psychiatry, but we believe that this textbook would be inadequate if it were only to summarize the information now accumulated that is directly pertinent to clinical practice. We also consider it our responsibility to impart a sense of direction for future developments by introducing students to the most important advances of our times, so that they will be able to evaluate the progress of this field in years to come. For this reason we are not content to consider only those aspects of neural science immediately relevant to neurology and psychiatry, but shall also discuss important scientific developments from current studies of animals that promise to provide a foundation for more effective understanding of normal and abnormal human behavior.

Engraved at the entrance to the Temple of Apollo at Delphi was the famous maxim "Know thyself." Central to enlightened Western culture from ancient times has been the idea that it is wise to understand oneself and one's behavior. Needed not only for clinical application, 178 neural science is required for understanding human behavior, because all behavior is an expression of neural activity. Beyond medicine, in society at large, the problems of crowding, addiction, violence, and war are rooted ** in the nature of human beings. Any intelligent attempts at solving the enormous problems of human behavior. both individual and collective, must benefit from greater knowledge of neural function. Many of these problems are not yet in the domain of neural science, but progress ** is rapid and we can hope that neural scientists will soon be able to contribute directly to understand them.

> Eric Re Kandel i James H. Schwartz

Acknowledgments

Columbia has provided a stimulating intellectual environment that encourages interaction between basic science and clinical departments, an essential condition for writing an interdisciplinary book. It is therefore a pleasure once again to express our indebtedness to Donald F. Tapley and to the College of Physicians & Surgeons of

Columbia University.

Many colleagues read portions of the manuscript critically. We are particularly indebted to John H. Martin and James P. Kelly for reading and commenting on all the anatomical chapters of the book and for helping us with the anatomical drawings. In addition, the following friends and colleagues have made constructive comments on various chapters, many of which have been incorporated into the present text: Israel Abramov, Paul Adams, Richard Aldrich, Robert Baker, Michael Bennett, Thomas Bever, Emilio Bizzi, Floyd Bloom, Robert Bowker, Dana Brooks, Michael Brownstein, Gail Burd, Paul Burgess, Robert Burke, John Byrne, Greg Clark, Bernard Cohen, David Corey, Maxwell Cowan, Joseph Coyle, John Davis, Nigel Daw, Mahlon Delong, Marc Dichter, John Dowling, Daniel Drachman, Ronald Dubner, Henry Epstein, Gerald Fischbach, Albert Fuchs, Harold Gainer, Michael Gazzaniga, Norman Geschwind, Charles Gilbert, Sid Gilman, Alexander Glassman, Mitchell Glickstein, Daniel Goldberg, Jay Goldberg, Michael Goldberg, Patricia Goldman-Rakic, Frederick Goodwin, James Gordon, Raymond Guillery, William Harris, Robert Hawkins, John Heuser, Stephen Highstein, Donald Hood, Richard Horn, James Houk, Albert Hudspeth, Jane Ellen Huttenlocher, Dorothea Jameson-Hurvich, Edward Jones, Jon Kass, Arthur Karlin, Harvey Karten, Darcy Kelly, Donald Klein, Kenneth Knoblauch, Arnold Kriegstein, Simon LeVay, John Liebeskind, Margaret Livingstone, Rodolfo Llinás, Joseph Martin, Robert McMasters, Herbert Meltzer, Michael Merzenich, George Miller, Robert Moore, Anthony Movshon, Ralph Norgren, Sanford Palay, James Patrick, Paul Patterson, Norman Pelkin, Edward Perl, Joel Pokorny, Jerome Posner, Isak Prohovnik, Edward Pugh, Dale Purves, Marcus Raichle, Pasco Rakic, Henry Ralston, Steven Rayport, Thomas Reese, Norman Relkin, Robert Rescorla, Harris Ripps, Norman Robbins, David Robinson, Paul Rozin, Kalman Rubinson, Zev Rymer, Harold Sackeim, Joseph Schildkraut, Stephen Schuetze, Carla Shatz, Gordon Shepherd, Murray Sherman, Ann-Judith Silverman, Barry Smith, Solomon Snyder, Louis Sokoloff, Nicholas Spitzer, Eliot Stellar, Peter Sterling, Charles Stevens, David Stoney, Michael Stryker, Larry Swanson, Herbert Terrace, Thomas Thach, Richard Tsien, David Van Essen, Stephen Waxman, Victor Wilson, Paul Witovsky, Kenneth Wolf, and Robert Wurtz.

We are again greatly indebted to Kathrin Hilten, who has been with the Center for Neurobiology and Behavior since its inception, for the initial preparation and final editing of the artwork. As always she took on this diffiand time-consuming task by combining expertise with judgment and good humor. We are also grateful to Sally Muir for her invaluable help. She read, edited, and improved this text, as she did its predecessor. We thank the Department of Art as Applied to Medicine, The Johns Hopkins University School of Medicine, and Terese Winslow for their work on the final figures, and Julie Ann Miller for reading and commenting on the text. We are grateful to Linda Sproviero, Barbara Sloane, and Erilyn Riley for coordinating the production of the book at Columbia, Harriet Ayers and Andrew Krawetz for typing, Ruth Melnick for copy editing the manuscript, Mildred Bobrovich for checking the bibliography, and Judy Cuddihy for preparing the index. Finally, we are grateful to Diane Maass at Elsevier for her critical assistance in producing this edition, and to Yale Altman for his enthusiastic and continued support of this book.

Contributors

College of Physicians & Surgeons of Columbia University

Craig H. Bailey, Ph.D.

Assistant Professor, Departments of Anatomy and Cell Biology and Psychiatry; Center for Neurobiology and Behavior

over a secondary of the control to tendings, Control

John C. M. Brust, M.D.

Professor, Department of Neurology; Director of Neurology Service, Harlem Hospital

Thomas J. Carew, Ph.D.

Professor, Departments of Psychology and Biology, Yale University

Vincent Castellucci, Ph.D.

Associate Professor, Department of Psychiatry; Center for Neurobiology and Behavior and the New York State Psychiatric Institute

Shu Chien, M.D., Ph.D.

Professor, Department of Physiology; Director, Division of Circulatory Physiology and Biophysics

Lucien Côté, M.D.

Associate Professor, Departments of Neurology and Rehabilitation Medicine

Michael Crutcher, Ph.D.

Research Fellow, Center for Neurobiology and Behavior

Stanley Fahn, M.D.

H. Houston Merritt Professor, Department of Neurology

Michael D. Gershon, M.D.

Professor and Chairman, Department of Anatomy and Cell Biology

Claude Ghez, M.D.

Professor, Departments of Neurology and Physiology, Center for Neurobiology and Behavior and the New York State Psychiatric Institute Peter Gouras, M.D.
Professor, Department of Ophthalmology

Eric R. Kandel, M.D.

University Professor, Departments of Physiology and Psychiatry, Center for Neurobiology and Behavior, Senior Investigator, Howard Hughes Medical Institute

Dennis D. Kelly, Ph.D.

Associate Professor, Department of Psychiatry; New York State Psychiatric Institute

James P. Kelly, Ph.D.

Research Scientist, Department of Anatomy and Cell Biology

John Koester, Ph.D.

Associate Professor, Department of Psychiatry, Acting Director, Center for Neurobiology and Behavior, New York State Psychiatric Institute

Irving Kupfermann, Ph.D.

Professor, Departments of Psychiatry and Physiology; Center for Neurobiology and Behavior

John H. Martin, Ph.D.

Assistant Professor, Department of Psychiatry; Center for Neurobiology and Behavior

Richard Mayeux, M.D.

Associate Professor, Department of Neurology

Lewis P. Rowland, M.D.

Henry & Lucy Moses Professor and Chairman, Department of Neurology, Director of Neurological Service, Presbyterian Hospital Edward J. Sachar, M.D. The late Lawrence C. Kolb Professor and Chairman, Department of Psychiatry

Samuel Schacher, Ph.D.

Assistant Professor, Departments of Anatomy and Cell Biology and Psychiatry; Center for Neurobiology and Behavior and the New York State Psychiatric Institute

Lowis & Rowland W.S. Henry S. Lev Mr. of the World Charman, Department James H. Schwartz, M.D., Ph.D.

Professor, Departments of Physiology and Neurology; Center for Neurobiology and Behavior; Investigator, Howard Hughes Medical Institute

Steven Siegelbaum, Ph.D.

College of Physicials & Suspins of Collandia Phasestry

Assistant Professor, Department of Pharmacology; Center for Neurobiology and Behavior

Contents

Preface xxxiii

Acknowledgments xxxv

Contributors xxxvii

Part I An Overall View

Brain and Behavior 3

Eric R. Kandel

Two Alternative Views Have Been Advanced on the Relationship between Brain and Behavior 4

Regions of the Brain Are Specialized for Different Functions 5

Cognitive Function Can Be Localized within the Cerebral Cortex 6

Affective and Character Traits Also Are Anatomically Localizable 10

Selected Readings 11

References 12

9. Nerve Cells and Behavior 13

Eric R. Kandel

The Nervous System Contains Two Classes of Cells 14

Nerve Cells 14

Glial Cells 17

Nerve Cells Are the Signaling Units of Behavioral Responses 19

Resting Membrane Potential 19

Input Signal: Receptor Potentials and Synaptic Potentials 21

Signal Integration 22

Conducting Signal: The Action Potential 22

Output or Secretory Signal 22

Location of Signaling Functions within Neurons 22

Similar Signaling Mechanisms Occur in All Nerve Cells 22

Selected Readings 24

References 24

Part II

Cell and Molecular Biology of the Neuron

3 The Cytology of Neurons 27

James H. Schwartz

The Two Classes of Nerve Cells That Mediate the Stretch Reflex Differ in Morphology and Transmitter Substances 28

The Primary Afferent (Sensory) Neuron 29 The Motor Neuron 30

The Sensory Neuron and the Motor Neuron Differ in the Types of Receptor in Their Membranes 31

The Two Neurons Share Similar Na⁺ Channels 32

The Two Neurons Have an Identical Na–K Exchange Mechanism 32

The Axons of Both Sensory and Motor Neurons Are Ensheathed in Myelin 32

A Major Function of the Neuron's Cell Body Is the Synthesis of Macromolecules 34

An Overall View 35

Selected Readings 35

References 35

4 Synthesis and Distribution of Neuronal Protein 37

James H. Schwartz

Nuclear mRNA Gives Rise to Three Classes of Proteins 38

Cytosolic Proteins 38

Mitochondrial Proteins 38

Membrane Proteins and Secretory Products 39

Anterograde Axonal Transport Controls Intracellular Distribution of Membranes and Secretory Proteins 42

Retrograde Axonal Transport 43

Hypotheses of the Mechanisms of Fast Transport 44

Fast Transport and Neuroanatomical Tracing 44

The Cytoskeleton Is Responsible for the Shape of Neurons 46

Fibrillar Elements Constitute the Neuronal Cytoskeleton 47

An Overall View 48

Selected Readings 48

References 48

5 Resting Membrane Potential and Action Potential 49

John Koester

The Membrane Potential Is Proportional to the Separation of Charge across the Cell Membrane 49

Blackstoff, April 180

The Resting Membrane Potential Is Generated by the Differential Distribution of Ions and Selective Permeability of the Membrane 52

In Glial Cells the Membrane Is Selectively Permeable to K⁺ 52

In Nerve Cells the Membrane Is Permeable to Several Ionic Species 54 The Passive Fluxes of Na⁺ and K⁺ Are Balanced by Active Ion Pumping Driven by the Na–K Pump 55

Cl Is Often Passively Distributed 55

The Action Potential Is Generated by a Change in the Selective Permeability of the Membrane from K⁺ to Na⁺ 56

The Resting and Action Potentials Can Be Quantified by the Goldman Equation 56

An Overall View 57

Selected Readings 57

References 57

6 Nongated Channels and the Passive Membrane Properties of the Neuron 58 John Koester

A Channel Is Characterized by Its Selectivity for Ions and Its Gating Properties 59

Electromotive Force Is Generated across the Membrane 60

The Membrane Has Conductive Pathways 60

The Resting Membrane Potential Can Be Calculated from the Equivalent Circuit of the Membrane 61

To Calculate V_m We Need Consider Only the Nongated K⁺ and Na⁺ Channels 62

The Equation for V_m Can Be Written in a More General Form 63

The Na-K Pump Counteracts the Passive Fluxes of Na⁺ and K⁺ 64

REPORTED & ARTERS

of testings I willow work

The Membrane Has Capacitance 64

An Overall View 65

Selected Readings 65

7 Functional Consequences of Passive Membrane Properties of the Neuron 66

Africally and Character Today who also are

John Koester

Membrane Capacitance Slows the Time Course of Signal Conduction 66
Simplified Equivalent Circuit Model 66
Rate of Change of Membrane Potential 67

Membrane Time Constant 69

Membrane and Axoplasmic Resistance Affect the Efficiency of Signal Conduction 69 Available Axon Diameter Affects Current Threshold 72

Passive Membrane Properties and Axon Diameter Affect the Velocity of Action Potential Propagation 72

Selected Readings 74

8 Voltage-Gated Channels and the Generation of the Action Potential 75

John Koester

The Action Potential Is Cenerated by the Flow of Ions Through Voltage-Gated Na⁺ and K⁺ Channels 75

Voltage-Dependent Channels Can Be Studied by Use of the Voltage Clamp . 76

The Voltage Clamp Employs Negative Feedback: 77
Na⁺ and K⁺ Currents Move Through Two
Independent Channels: 78

Na⁺ and K⁺ Conductances Are Calculated from Their Currents 79

The Actions Potential Can Be Reconstructed from the Individual Electrical Properties of the Neuron 80

The Na⁺ Channel Can Be Characterized in Molecular Terms 81

Na⁺ Channels Are Sparsely Distributed but Are Highly Efficient Pathways for Na⁺ Flux, 82

Voltage-Gated Channels Open in an All-or-None Fashion 82

Charge within the Membrane Is Rearranged When Voltage-Gated Na⁺ Channels Open 83

The Na⁺ Channel Selects for Na⁺ on the Basis of Size, Charge, and Energy of Hydration 83

The Major Subunit of the Na⁺ Channel Is a Large Glycoprotein 83

Membrane Channels Vary among Cell Types and among Different Regions of the Same Cell 85

An Overall View 88

An Overall View 80
Selected Readings 86

References 86

Part III

Elementary Interactions between Neurons:
Synaptic Transmission 87

9 Principles Underlying Electrical and Chemical Synaptic Transmission 89

Eric R. Kandel and Steven Siegelbaum

Synaptic Transmission Can Be Electrical or Chemical 89

Synaptic Excitation of Skeletal Muscle by Motor Neurons Is Chemical and Is Now Understood in Molecular Terms 94

The Excitatory Synaptic Potential at the End-Plate Involves the Simultaneous Movement of Na⁺ and K⁺ 95

There Are Fundamental Differences between Chemically Gated and Voltage-Gated Channels 98

Studies of Single Chemically Gated Channels Reveal Information about Conformational Changes and the Molecular Mechanisms of Transmitter Action 99

Chemically Gated Channels Open in an All-or-None Fashion 99

Current Flow Depends on the Number of Open Channels and Transmitter Concentration 99

An Overall View 104

Postscript: The Synaptic Current Flow during the Excitatory Postsynaptic Potential Can Be Calculated on the Basis of a Simple Equivalent Circuit 104

Selected Readings 107

References 107

10 Chemically Gated Ion Channels at Central Synapses 108

Eric R. Kandel

Some Synaptic Actions Are Due to the Opening of Ion Channels That Are Closed at the Resting Potential 109

Experimental Background 109

Excitatory Postsynaptic Potentials on Motor Neurons 110

Current That Flows during the EPSP 110 Chemical Transmitters for Excitation 113 Inhibitory Postsynaptic Potentials on Motor Neurons 113

Current That Flows during the IPSP 113 Chemical Transmitters for Inhibition 115

Other Synaptic Actions Are Due to the Closing of Ion Channels That Are Open at the Resting Potential 115

Ionic Mechanisms for Signaling Have Features in Common 118

Integration of Signals Determines Firing of Action Potential 119

Selected Readings 119

References 119

www.ertongbook.com

11 Factors Controlling Transmitter Release 120

Eric R. Kandel

Certain Ion Species Are Necessary for Transmitter Release 120

Na⁺ Influx Is Not Necessary 121 K⁺ Efflux Is Not Necessary 122 Ca⁺⁺ Influx Is Necessary 123

Transmitter Is Released in Packets Called Quanta 124

Amount of Ca⁺⁺ Influx Affects the Number of Quanta Released 125

Amount of Transmitter Release Can Be Controlled by Altering Ca⁺⁺ Influx 127

Intrinsic Regulatory Processes (Membrane Potential and Activity) Can Alter Ca⁺⁺ Influx and Accumulation within the Terminal 127

Extrinsic Regulatory Processes (Presynaptic Inhibition and Facilitation) Can Also Alter Ca⁺⁺ Influx and Accumulation 127

An Overall View 130

Selected Readings 130

References 131

12 Morphology of Chemical Synapses and Patterns of Interconnection 132

Michael D. Gershon, James H. Schwartz, and Eric R. Kandel

Chemical Synapses Can Be Classified into Directed and Nondirected Types 132

The Nerve-Skeletal Muscle Synapse Is an Example of a Directed Synapse 133

The Presynaptic Terminal: Vesicles, Exocytosis, and the Active Zone 133

Active Zones 133
Freeze-Fracture Reveals the Panoramic Interior of Synaptic Membranes 134
Recycling of Vesicle Membranes 136
There Is Now Electrical Evidence for Exocytosis and for Membrane Retrieval 138

The Postsynaptic Component 138

The Autonomic Postganglionic Synapse Is an Example of a Nondirected Synapse 140

Synapses in the Central Nervous System Have Diverse Morphologies 140

Extent of Presynaptic Specialization 140
Types of Synaptic Vesicles 142
Geometry of the Zone of Apposition 142
Site of Contact 142

Inputs onto a Neuron Can Be Highly Segregated 142 Interconnections Give Rise to Local Processing of Information 144

An Overall View 146

Selected Readings 146

References 146

13 Chemical Messengers: Small Molecules and Peptides 148

James H. Schwartz

The Nature of Chemical Messengers 148

Small-Molecule Transmitter Substances 150

Acetylcholine 150
Biogenic Amine Transmitters 151

Amino Acid Transmitters 152

Neuroactive Peptides 153

Peptides and Small-Molecule Transmitters Differ in Several Presynaptic Features 155

Chemical Messengers Can Be Localized within Neurons 156

An Overall View 156

Selected Readings 157

References 158

14 Molecular Aspects of Postsynaptic Receptors 159

James H. Schwartz

Structure and Function of Receptors 160

There Are Two Classes of Receptors, One That Mediates Changes in Membrane Conductance and Another That Mediates Changes in the Metabolic Machinery of the Postsynaptic Cell 160

The Nicotinic Acetylcholine Receptor Is a Multimeric Intrinsic Membrane Protein 160

Partial Characterization of Other Ionophoric Receptors Indicates That They Also Are Large Membrane Protein Complexes 163

An Important Class of Receptors Mediates Changes in the Metabolic Machinéry of the Postsynaptic Cell 164

Characterization of Receptors by Speed of Onset and by Duration of Action 166

An Overall View 167

Selected Readings 167

References 167

15 Molecular Steps in Synaptic Transmission 169

James H. Schwartz

Vesicles Store and Release Chemical Messengers 170 ASS area V Haravo pA

Storage in Vesicles Protects the Transmitter from Degradation 170

Subcellular Fractionation Allows Biochemical Study of Vesicles 170

Transmitter Is Actively Taken up into Vesicles 171

Vesicles Are Involved in Transmitter Release 171

Vesicle Membranes Differ with Type of Neuron 172 violens di amot primit

Transmitter Is Removed from the Synaptic Cleft to Terminate Synaptic Transmission 172

A Late Consequence of Transmitter Action: Control of Transmitter Biosynthesis in the Postsynaptic Cell 172
Catecholamine Biosynthesis, 173

The Media Lements of the care of Treongle the Brain

The Thaismus It Compared of his fampionally

Acetylcholine Biosynthesis 174

An Overall View 174

Selected Readings 175 Warold and the parties of

References 175

16 Diseases of Chemical Transmission at the Nerve-Muscle Synapse: Myasthenia Gravis 176 Walsh alioso

Lewis P. Rowland 1995 island noiseague

Myasthenia Gravis Is Defined by Means of Clinical, Physiological, and Immunological Criteria 176

The Essential Characteristics of the Disease Were Defined between 1877 and 1970 177

Physiological Studies Showed a Disorder of Neuromuscular Transmission 178 Immunological Studies Indicated That Myasthenia Is an Autoimmune Disease 178

Identification of Antibodies to ACh Receptor Initiated the Modern Period of Research 179 The Antibodies Make Animals Myasthenic 179

The Antibodies Lead to Symptoms in Humans 180

Immunological Changes Cause the Physiological Abnormality ' 180

Antireceptor Antibodies Can Now Be Produced without Receptor 182

Important Problems Remain To Be Solved 182

Myasthenia Gravis May Be a Heterogeneous Niscases of the Motor Menga 184 apassasi(I

Current Therapy Is Effective but Not Ideal 184

Other Disorders of Neuromuscular Transmission: Presynaptic (Facilitating) Neuromuscular Block 184 800 (kelinisquare)

An Overall View 185

Selected Readings 185

References of Muscle (Myogova) about 185 and 201

17 Reactions of Neurons to Injury 187

James P. Kelly

Cutting the Axon Causes Changes in the Neuron and in Glial Cells 188

We tenes or Myotonia 216

Terminal Degeneration Leads to the Rapid Loss of the Presynaptic Terminal 188

Wallerian Degeneration Leads to the Slow Loss of the Distal Axon Segment 189

The Neuronal Cell Body Also Reacts to Axotomy 191

Central Axons Can Regenerate under Certain Favorable Circumstances 192

Glial Cells Absorb the Debris Caused by Injury 192 mestave superior le trus) estrac

Transneuronal Degeneration Leads to Changes in Cells to Which the Damaged Neuron Connects 193 snowbarred att 10 val pages

The Prognosis for Recovery from Damage to the Nerve Cells of the Brain May Soon Be Improved 194

An Overall View 194 and analysis of the

Selected Readings 194

References 195

18 Diseases of the Motor Unit: The Motor Neuron, Peripheral Nerve, and Muscle 196 to meter debytes took int

Lewis P. Rowland

The Motor Unit Is the Functional Element of the Motor System 196

Neurogenic and Myopathic Diseases Are Defined by the Component of the Motor Unit That Is Affected 197

Neurogenic and Myopathic Diseases Are Neurogenic and Myopatilic Distinguished by Clinical and Laboratory Criteria 198 Clinical Evidence 198

Laboratory Evidence 199

Diseases of the Motor Neuron 202 Chronic and Acute Diseases 202 Pathophysiology 203

Diseases of Peripheral Nerves (Peripheral Neuropathies) 203

Positive and Negative Symptoms 204
Pathophysiology of Demyelinating
Neuropathies 204

Diseases of Muscle (Myopathies) Can Lead to Weakness or Myotonia 206

Inherited Myopathies 206
Acquired Myopathies 206

Degeneration of Muscle Fibers May Not Be the Only Cause of Weakness in Muscle Disease 206

Some Forms of Myotonia May Be Due to Decreased Numbers of Cl Leakage Channels 207

An Overall View 208

Selected Readings 208

Part IV
Functional Anatomy
of the Central Nervous System 209

19 Principles of the Functional and Anatomical Organization of the Nervous System 211

James P. Kelly

The Central Nervous System Has an Axial Organization .211

coupl is agus assisted Leades to Chargo

The Central Nervous System Is Subdivided into Six Main Regions 212

The Cerebral Cortex Is Further Subdivided into Four Lobes 214

The Central Nervous System Surrounds an Interconnected System of Four Cavities Called Ventricles 215

Even Simple Behavior Recruits the Activity of Three Major Sets of Functional Systems 216

The Motivational Systems Act Through Two Independent Motor Systems: the Autonomic and Somatic 218

Four Principles Govern the Organization of the Functional Systems of the Brain 220

Each Major System in the Brain Is Composed of Several Distinct Pathways in Parallel 220 Each Pathway Contains Synaptic Relays 220
Each Pathway Is Topographically Organized 220
Most Pathways Are Crossed 221

An Overall View 221

Selected Readings 221

References 221

20 Anatomical Basis of Sensory Perception and Motor Coordination 222

James P. Kelly

In the Somatic Sensory Systems, Axons Travel along the Spinal Cord to the Brain 223

Dorsal Root Ganglion Cells Provide Input to the Spinal Cord 223

The Spinal Cord Is Composed of Both Gray and White Matter 225

The Internal Structure of the Spinal Cord Varies at Different Cross-Sectional Levels 225

Axons of Dorsal Root Ganglion Cells Are Somatotopically Arranged 227

Axons of the Dorsal Root Ganglion Cells That Course in the Dorsal Columns Synapse in the Medulla 227

The Medial Lemniscus Ascends Through the Brain Stem 228

The Thalamus Is Composed of Six Functionally Distinct Nuclear Groups 231

Each Nuclear Group Belongs to One of Three Functional Classes 232

Specific Relay Nuclei 232 Association Nuclei 234 Nonspecific Nuclei 235

Relation of the Thalamic Nuclei to Cortical Function 235

All Other Major Sensory Systems Relay Through the Thalamus on the Way to the Cortex 235

Hearing and Balance 235
Taste 235
Smell 236

The Cerebral Cortex Consists of Layers of Neurons 236

The Two Main Varieties of Cortical Neurons Are Pyramidal and Stellate Cells 236

The Pattern of Layering Varies in Different Cortical Areas 237

The Descending Motor Systems Interconnect the Cortex, Basal Ganglia, and Thalamus 238

The Cerebellum Is Important in Regulating the Automatic Control of Movement 238

The Basal Ganglia Project to the Motor Cortex via the Thalamus 239 Various Inputs Converge on the Motor Cortex 240

The Corticospinal Tract Is a Direct Pathway from the Cortex to the Spinal Cord 241

The Motivational Systems Include Connections between the Limbic System and the Hypothalamus 243

An Overall View 243

Selected Readings 243

References 243

21 Development as a Guide to the Regional Anatomy of the Brain 244

John H. Martin

The Neural Tube and Its Vesicles Are the Embryonic Precursors of the Various Brain Regions 245

The Spinal Cord and Brain Stem Have a Similar Developmental Plan 248

The Cavities of the Brain Vesicles Are the Embryonic Precursors of the Ventricles 250

The Ventricular System Provides a Framework for Understanding the Regional Anatomy of the Diencephalon and Cerebral Hemispheres 252

The Caudate Nucleus Is C-Shaped and Parallels the Lateral Ventricles 255

The Major Components of the Limbic System Are Also C-Shaped 255

An Understanding of the C-Shaped Gyri Is Necessary for Interpreting Sections Through the Brain 258

An Overall View 258

Selected Readings 258

References 258

22 Imaging the Living Brain 259

John H. Martin and John C. M. Brust

Computerized Tomography (CT) Scanning Has Improved the Resolution of Images of Brain Structures 260

Positron Emission Tomography (PET) Scanning Yields a Dynamic Picture of Brain Function 267

Magnetic Resonance Imaging (MRI) Creates Brain Images without Using X-rays 269

MRI Images Can Provide an Atlas of Key Sections Through the Living Brain 269

Midsagittal Section Reveals C-Shaped Structures 269

Parasagittal Section Shows Shape of the Lateral Ventricle 271

The Corticospinal Tract Is Located on the Ventral Surface of the Medulla 271

The Dorsal Surface of the Pons Forms Part of the Floor of the Fourth Ventricle 271

The Superior and Inferior Colliculi Form the Dorsal Surface of the Midbrain 271

Horizontal Section Through the Cerebral Hemispheres Allows Both Cortical and Subcortical Structures to Be Visualized 271

The Caudate Nucleus Forms the Wall of the Anterior Horn and Body of the Lateral Ventricle 280

The Anterior Limb of the Internal Capsule
Separates the Caudate Nucleus from the
Globus Pallidus and Putamen 280

MRI Facilitates Clinical Diagnosis 280

An Overall View 282

Selected Readings 282

References 283

Part V Sensory Systems of the Brain: Sensation and Perception 285

23 Receptor Physiology and Submodality Coding in the Somatic Sensory System 287

John H. Martin

Sensory Systems Are Organized in a Hierarchical and Parallel Fashion 288

Sensory Psychophysical Studies Correlate Behavior with the Physiology of Neurons 288

Sensory Thresholds for Perception and for Afferent Fibers May Be Equal 289

Stimulus Intensity Evaluation Is Correlated with the Discharge Rate of Afferent Fibers 290

Spatial Discrimination Is Explained by Receptor Innervation Density 290

Stimulus Features Are Electrically Encoded by Receptors 291

Sensory Transduction Is the First Step in the Extraction of Stimulus Features 291

Stimulus Intensity Is Encoded by Frequency and Population Codes 292 Rapid Receptor Adaptation Is a Form of Feature Extraction 292

Different Classes of Afferent Fibers Conduct Action Potentials at Different Rates 293

Different Classes of Somatic Receptors Are Sensitive to Different Stimuli 294

Stimulus Quality Is Encoded by a Labeled Line Code 294

Pain Is Mediated by Nociceptors 294

Thermal Sensation Is Mediated by Cold and Warm Receptors 295

Tactile Sensations Are Mediated by Slowly and Rapidly Adapting Mechanoreceptors 296

Proprioception Is Mediated by Muscle Afferent Fibers 297

An Overall View 299

Selected Readings 300

References 300

24 Anatomical Substrates for Somatic Sensation 301

John H. Martin

The Area of Skin Innervated by a Single Dorsal Root Is Called a Dermatome 301

The Spinal Cord Is Organized into Gray and White Matter 304

Spinal Gray Matter Contains Nerve Cell Bodies 304

Spinal White Matter Contains Myelinated Axons 306

Dorsal Root Fibers Run in the White Matter and Arborize in the Gray Matter 306

Two Major Ascending Systems Convey Somatic Sensory Information to the Cerebral Cortex 307

The Dorsal Column–Medial Lemniscal System Mediates Tactile Sense and Limb Proprioception 307

The Anterolateral System Mediates Pain and Temperature Sense 311

The Primary Somatic Sensory Cortex Is Divided into Four Parts 312

Pyramidal Cells Are the Output Cells of the Cerebral Cortex 313

An Overall View 315

Selected Readings 315

References 315

25 Central Representation of Touch 316 Eric R. Kandel

Sensory Systems Transform Information at Specific Relay Points . 317

The Body Surface Is Mapped onto the Brain 319
Functional Analyses Localized Somatic Sensations
to Specific Regions of Cortex 319

Modern Electrophysiological Studies Correlated Body Areas and Cortical Areas 320

Why Is the Map So Distorted? 322

Each Central Neuron Has a Specific Receptive Field 323

Sizes of Receptive Fields Vary 324
Receptive Fields Have a Fine Structure 325
Lateral Inhibition Gan Aid in Two-Point,
Discrimination 325

Modality-Specific Labeled Communication Lines Are Organized into Columns 326

Modality-Specific Columns Are Grouped into Domains 326

Dynamic Properties of Receptors Are Matched to Those of Central Neurons 327

Feature Detection: Some Central Nerve Cells Have Complex Properties 328

An Overall View 329

Selected Readings 330

References 330

26 Central Representations of Pain and Analgesia 331

Dennis D. Kelly

Pain Is Transmitted by Specific Neural Pathways 332

Receptors for Pain May Be Activated by Mechanical, Thermal, or Chemical Stimuli 332

Primary Pain Afferents Terminate in the Dorsal Horn of the Spinal Cord 332

At Least Two Populations of Neurons in the Spinal Cord Transmit Information about Pain 333

Spinal Pain Projections to the Brain Stem Are Widespread 334

Thalamic Relays Preserve the Duality of Ascending Pain Projections 334

Central Pain Syndrome: Surgery Intended to Relieve Existing Pain May Produce New Pain 335

her " exter" mainte mander or expenses

xvii

The Gate Control Theory Emphasized the Modulation of Pain by Sensory and Emotional Stimuli 335

Pain Is Also Inhibited by Select Neural Pathways: The Mechanisms of Analgesia 336

Direct Electrical Stimulation of the Brain Produces Analgesia 336

Stimulation-Produced Analgesia Is Related to Opiate Analgesia 337

Opiate Receptors Are Distributed Throughout the Nervous System 337

There Are Three Branches of Opioid Peptides 337

Different Classes of Opiate Receptors Mediate Different Actions 340

Spinal Neurons That Transmit Pain Are Subject to Descending Control 340

Behavioral Stress Can Induce Analgesia via Both Opioid and Non-Opioid Mechanisms 340

An Overall View 342

Selected Readings 342

References 342

7.7 The Retina and Phototransduction 344

Craig H. Bailey and Peter Gouras

There Are Two Types of Photoreceptors: Rods and Cones 344

Rods and Cones Differ in Structure and Function 346

Excitation of Rod Cells Involves the Breakdown of Rhodopsin 347

Excitation of Cone Cells Involves the Breakdown of Cone Opsin 347

Light Is Transduced into Electrical Signals by a Second-Messenger System 347

Visual Information Is Processed by Five Major Classes of Neurons in the Retina 349

There Are Distinct On-Center and Off-Center Pathways 350

The On-Center and Off-Center Pathways Use Both Electrical and Chemical Synapses 351

There Are Parallel Systems of Ganglion Cells 353

Horizontal Cells Are Local Interneurons in the Outer Plexiform Layer That Contribute to Center-Surround Antagonism 353

Amacrine Cells Are Local Interneurons in the Inner Plexiform Layer That Mediate Antagonistic Interactions 353

An Overall View 354

Selected Readings 355

References 355

28 Anatomy of the Central Visual Pathways 356

James P. Kelly

The Visual Field Is the Projection of the Visual World on the Retina 356

The Lateral Geniculate Nucleus Is Composed of Six Cellular Layers 359

The Superior Colliculus and Pretectum Are Visual Reflex Centers 361

Superior Colliculus 361 Pretectal Region 361

Lesions in the Visual Pathway Cause Predictable Changes in Sight 362

The Primary Visual Cortex Has a Characteristic Cellular Architecture 363

An Overall View 365

Selected Readings 365

References 365

2.9 Processing of Form and Movement in the Visual System 366

Eric R. Kandel

The Superior Colliculus Participates in Visually Guided Saccadic Eye Movements 367

The Retina Is Mapped in the Lateral Geniculate Nucleus and Visual Cortex 367

Receptive Fields of Neurons in Various Parts of the Visual System Have Different Properties 370

The Ganglion Cells of the Retina Project Information to the Lateral Geniculate Nucleus by Means of Several Independent Channels 372

The Lateral Geniculate Nucleus Enhances the Antagonisms between the Center and the Surround 372

The Primary Visual Cortex Transforms the Visual Message in Various Ways 373

The Primary Visual Cortex Is Organized into Columns 376

Simple and Complex Cells May Contribute to Positional Invariance in Perception 378