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I. Introduction

Most bacterial species have the ability to synthesize the amino acid
histidine. The most extensive studies on this pathway have been con-
ducted in the enteric bacteria, Salmonella typhimurium and Es-
cherichia coli, and in yeasts. The biochemical pathway leading to the
biosynthesis of histidine was elucidated by B. N. Ames and his col-
leagues in the late 1950s and early 1960s. Interest in the genetic orga-
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2 FRANCESCO BLASI AND CARMELO B. BRUNI

nization of this system arose quite early [for a review see P. E.
Hartman et al. (61)] and these early genetic studies helped elucidate
some aspects of the operon theory as originally proposed by F. Jacob
and J. Monod (3, 70). Several interesting phenomena have been inves-
tigated using the histidine operon as a model system: the existence of
polycistronic messenger RNAs (91), polarity (94), and regulation of
operon expression (30, 55).

Very extensive reviews on the histidine operon and its regulation
were published between 1970 and 1972 (30, 49, 57, 93). Material re-
ferred to in those articles will be only briefly discussed here, the em-
phasis being given mostly to more recently unreviewed results. This
article will not try to cover all aspects of histidine biosynthesis but
rather will focus on those areas in which considerable progress has
been made in the last few years.

Il. Histidine Biosynthesis: The Reactions, the Enzymes

Figure 1 shows the ten enzymatic steps used by S. typhimurium to
synthesize histidine. No differences have been found in E. coli or in
yeasts. Some of the enzymes have been isolated from S. ¢typhimurium or
E. coli and studied in detail. Information on the histidine pathway and
on the histidine enzymes up to about 1972 has been reviewed (30, 57,
93); this information is summarized as follows:

1. The pathway consists of ten enzymatic steps, without any branch
point leading to the synthesis of other metabolites required for growth.
An adenine requirement is imposed on histidine auxotrophs when
grown with limiting histidine or on kisG feedback-resistant, hisT dou-
ble mutants. The requirement may result from depletion in the in-
tracellular adenine pool, caused by the uncontrolled use of ATP in
histidine biosynthesis, and provides a powerful selection for AisG and
his promoter mutants (72).

2. Histidine biosynthesis is regulated both genetically and enzymat-
ically. Enzymatic regulation results from feedback inhibition of the
first biosynthetic enzyme by the end product of the pathway, histidine,
at the concentration of the internal histidine pool (15 wM). Histidine
acts at an allosteric site (92) causing a conformation change of the
enzyme (22).

3. The histidine biosynthetic pathway in vivo operates at an overall
rate well below its maximal capabilities. This is completely a result of
feedback inhibition as shown by the drastic increase in the rate of
histidine production in feedback-resistant mutants (30).
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4 FRANCESCO BLASI AND CARMELO B. BRUNI

-A. The First Enzyme

Table I summarizes the structural information on the histidine
biosynthetic enzymes. The data are taken from R. G. Martin et al. (93)
and are revised according to more recent information that will be dis-
cussed later. The available data on the E. coli enzymes have been
included.

The first enzyme of the biosynthetic pathway, N-1-(5'-phospho-
ribosyl)adenosine phosphoribosyltransferase (abbreviated: ATP phos-
phoribosyltransferase) (EC 2.4.2.17), the product of the hisG gene
(hence sometimes called the G enzyme), catalyzes the first step
of the pathway and is inhibited by histidine. Preliminary work on
this enzyme required partial reevaluation when it was discovered
that purified preparations contained a contaminant, histidase. A
method is now available (106) for the rapid isolation of ATP
phosphoribosyltransferase free of contaminants. This method uses a
strain containing a gal chl hut bioA uvrB deletion as the source of
enzyme and employs only precipitation steps (heat, ammonium sulfate,
acid pH) in the presence or absence of histidine, taking advantage of
the conformational changes induced by the inhibitor (106). The purified
enzyme is a hexamer of molecular weight (MW) 215,000, composed of
identical subunits of MW 33,200 (111). Under assay conditions the
enzyme is present in a hexameric form, but multiple aggregation states
can be demonstrated under other conditions (107). The enzyme is inac-
tivated by bulky alkylating reagents acting on a unique reactive
group. At least five conformations of the native enzyme must be pres-
ent at significant levels to account for the inactivation behavior (109).
At low temperature, species of lower and higher aggregation states
than the hexamer can be demonstrated; at low ionic strength or at
alkaline pH, the enzyme is a dimer, which appears to be the basic
oligomeric unit. Thus, the hexameric enzyme appears to be a trimer of
dimers. Combination of alkaline pH and low ionic strength leads the
dimer to further dissociate into monomers. The substrates (ATP and
PRPP) or histidine, in the presence of sodium ions, stabilize the
hexameric form. Aggregation of the enzyme may be adequately de-
scribed by the equilibria of Fig. 2; each state of aggregation predomi-
nates under different sets of conditions. The time required for intercon-
version of the various states may be on the order of minutes and is
influenced by the presence of histidine or of the substrates (15). In early
work, exchange reactions in the presence of only one substrate (PRPP)
suggested that an intermediate covalently bound to the enzyme was
formed (92,13). More recent studies could find no evidence for such an
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Low Temperature or High Salt

D, Dp —= D3

]
Heat
pH 10 or '
« _Low Salt .
D] = D}
Il .
His
[
D*i
3

FiG. 2. Aggregation states of ATP phosphoribosyltransferase. At low temperature or
high salt, the enzyme aggregates in the indefinite continuous manner indicated on the
top line. The dimer D; is the basic aggregation unit. Above 22°C in 0.1 M salt at pH 7.5 or
8.5, the enzyme is predominantly the hexamer D;. Low ionic strength or pH 10 will cause
the high-temperature hexamer (D¥) to dissociate to dimer D%. Substrates and inhibitor
(histidine) each lock the enzyme into the hexameric state. However the hexamer created
by histidine has a different sensitivity toward inhibition by histidine in the assay than
the hexamer created by high temperature. Reproduced from Parsons and Koshland (107)
by permission of the authors and the publisher.

intermediate (27). The stereochemistry of the reaction product, phos-
phoribosyl ATP, also speaks against the formation of a covalent inter-
mediate generated by a double displacement mechanism. Possibly the
early workers were misled by the presence of the other substrate, ATP,
as an impurity in the commercial batches of phosphoribosylpyro-
phosphate (PRPP) (27).

The enzyme purified from E. coli (77) appears to have properties very
similar to those of S. typhimurium, i.e., subunit size (77a), inhibition
by histidine (77), and presence of several aggregation states (76). The
basic oligomeric unit is also a dimer (132). The equilibrium between
the aggregation states is also shifted toward the hexameric form by
histidine (133).

A major advance in our knowledge of ATP phosphoribosyltransferase
has been the determination of its primary structure (111), which is
reported in Fig. 3. The enzyme is composed of 299 amino acids, has 5
cysteines and no disulfide bridge. Several data argue that a cysteine is
essential for activity (109, 14). The position of this cysteine, however,
has not yet been identified. From the sequence, the authors noticed that
a 40-residue segment of ATP phosphoribosyltransferase, which con-
tains a cysteine, may have partial homology (14 amino acids out of 40)



