Mathematical
Theory of
Elasticity

L <t<t

Richard B. Hetnarski and Jozef Ignaczak



MATHEMATICAL THEORY
OF ELASTICITY

Richard B. Hetnarski

Department of Mechanical Engineering, Rochester Institute of Technology,
Rochester, New York, U.S.A.

Jozef Ignaczak

Center of Mechanics, Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland

Taylor & Francis

2004



Denise T. Schanck, Vice President
Robert L. Rogers, Senior Editor

Liliana Scgura, Fditorial Assistant
Savita Poornam, Marketing Manager
Randy Harinandan, Marketing Assistant

Dennis P. Teston, Production Dircctor
Anthony Mancini Jr., Production Manager
Brandy Mui, STM Production Editor
Mark Lerner, Art Director

Danicl Sierra, Cover Designer

Published in 2004 by
Taylor & Francis

29 West 35th Street
New York, NY 10001

www.taylorandfrancis.com
Published in Great Britain by
Taylor & Francis

11 New Fetter Lane
London EC4P 4EE

www.taylorandfrancis.co.uk

Copyright (© 2004 by Taylor & Francis Books, Inc.

Printed in the United States of America on acid-free paper.

All rights reserved. No part of this book may be reprinted or reproduced or utilized
in any form or by any eclectronic, mechanical, or other means, now known or here-
after invented, including photocopying and recording, or in any information storage

or retrieval system, without permission in writing from the publisher.

10 9 8 7 6

@34
B
0
bo
—

Library of Congress Cataloging-in-Publication Data

Hetnarski, Richard B.
Mathematical theory of elasticity / Richard B. Hetnarski, Jozef Ignaczak.
p. cm.
Includes bibliographical references and index.
[SBN 1-59169-020-X
1. Elasticity. 1. Ignaczak, Jozef 11. Title.
QA931.H57 2003
5317.382 dc21 2003046771






MATHEMATICAL THEORY
OF ELASTICITY



We dedicate this book
to the memory
of our teacher
WITOLD NOWACKL
He changed our lives.
The authors



Preface

The purpose of this book is to present the Mathematical Theory of Elasticity
and its applications in a form suitable for a wide range of readers includ-
ing graduate students, those preparing PhD theses, and those conducting
research in continuum mechanics. Therefore, the book is not only a grad-
uate textbook, but also serves as a complementary text to existing books
on elasticity in that it provides classical results on elasticity as well as the
new results obtained in recent years by various researchers, including the
authors and their collaborators. Also, the book provides a bridge between
the Mathematical Theory of Elasticity and Applied Elasticity through spe-
cific applications given in numerous Examples and Problems. It covers in
one volume the areas of Elastostatics, Thermoelastostatics, Elastodynam-
ics, and Thermoelastodynamics. Special emphasis is placed on the problems
of elastodynamics and thermoelastodynamics, as most existing books on
Elasticity deal mainly with elastostatics and thermoelastostatics.

The book consists of 13 chapters. The brief Chapter 1 tells about some of
the creators of the Theory of Elasticity, Chapter 2 provides the Mathemati-
cal Preliminaries, Chapters 3-8 cover the Fundamentals of Linear Elasticity
and applications, and Chapters 9-13 deal with applications only. Chapters 2
through 8 contain worked Examples that illustrate the theory involved, and
at the end of each chapter, except Chapter 1, a number of Problems are
included.

While making a selection of the material it was the authors’ intention to
provide the reader with both typical and new results of classical type, and
to outline new areas of research. Therefore, Chapters 3—8 cover Kinematics,
Motion and Equilibrium, Constitutive Relations, Formulation of Problems,
and Variational Principles. New topics, such as the Convolutional Varia-
tional Principles of Elastodynamics due to M. E. Gurtin and the Pure
Stress Formulations of Classical Elastodynamics that have emerged recently,
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xviii PREFACE

are also discussed in detail. A new three-dimensional compatibility related
variational principle of elastostatics corresponding to the two-dimensional
result due to L. S. Leibenson [see, Theory of Elasticity, 2nd ed.,
Gostekhizdat, Moscow, 1947] is formulated in Chapter 5, while a number
of unsolved PhD-level problems on incompatible elastodynamics are sug-
gested at the end of Chapter 6. The Problems at the end of Chapter 7
on the complete solutions of elasticity include a Galerkin-type tensor solu-
tion as well as a Lamé-type tensor solution, both related to the pure stress
treatment of elastodynamics. Chapters 9 and 10 treat, respectively, the solu-
tions to particular three- and two-dimensional problems of elastostatics, and
include detailed derivations of classical solutions such as Boussinesq’s and
Cerruti’s solutions of three-dimensional elastostatics for a semispace sub ject
to a concentrated boundary force, the solutions to two-dimensional counter-
parts of the Boussinesq’s and Cerruti’s problems, and the solutions to sta-
tionary three- and two-dimensional thermoelastic problems for a semispace
involving thermal singularities and inclusions [see, Witold Nowacki, Ther-
moelasticity, Addison-Wesley Reading, Mass., 1962]. The Kirsch’s problem
for an infinite sheet with a circular hole subject to uniform tension at in-
finity (1898) is revisited in Chapter 10: what is new is the analysis of the
associated displacements that is ignored in most of the books on elasticity.
Also, the concept of a displacement concentration factor as opposed to a
well-known stress concentration factor is presented.

Chapters 11 and 12 deal, respectively, with particular solutions of three-
and two-dimensional problems of elastodynamics and thermoelastodynam-
ics. Apart from the classical results, such as singular solutions of three-
and two-dimensional elastodynamics and thermoelastodynamics for an infi-
nite body, these chapters also include: (i) a tensorial classification of elastic
waves, (ii) the solutions describing stress waves due to the initial stress and
stress-rate fields in an infinite space, (iii) the dynamical thermal stresses
produced by an instantaneous spherical temperature inclusion in an infi-
nite body, and (iv) the Saint-Venant principle of elastodynamics in terms
of stresses only. The authors obtained results in (ii) (iv) only recently and
these results are published here for the first time. Also, for the first time a
closed-form solution that describes dynamical thermal stresses produced by
an instantaneous source of heat in an infinite elastic sheet is published in
Chapter 12. Finally, Chapter 13 covers a number of closed-form solutions
to the one-dimensional initial boundary-value problems of isothermal and
nonisothermal elastodynamics, including Green’s functions for the infinite



PREFACE xix

and semi-infinite solids as well as the solution that describes response of a
semispace to short laser pulses.

Although the book is long, the authors had to make compromises, and
a number of topics had to be omitted for lack of space. These topics, like,
for example, complex variables method and numerical methods in solving
differential equations and in performing inverse Laplace transformations, are
treated well in easily accessible literature, and the authors feel they would
contribute nothing new in presenting them.

Throughout the book the direct (that is, vectorial and tensorial) nota-
tion as well as the Cartesian coordinates are used. The associated termi-
nology and general scheme of the notation follows that of M. E. Gurtin
[The Linear Theory of Elasticity, Encyclopedia of Physics, Chief Editor
S. Fliigge, vol. Vla/2, Editor C. Truesdell, Springer, Berlin, 1972]. How-
ever, the authors have taken care to make the material easily accessible
to the beginners and to those who have already gained an insight into the
subject. The theory is developed in the style of Gurtin’s treatise, but in
addition to the presentation of basic concepts and theorems, Chapters 2-8
include 148 Examples that illustrate the theory and make the book more
comprehensible. Specific applications taken up in the book are developed
by using the integral representations of an external thermo-mechanical load
to solve typical boundary-value problems of elastostatics and thermoelasto-
statics, and by taking advantage of the Laplace transform with respect to
time when solving the initial boundary-value problems of elastodynamics
and thermoelastodynamics.

One of the authors (JI) wishes to thank Dr. Charles Haines of Rochester
Institute of Technology for allowing him to give a course on Theory of Elas-
ticity to graduate students in the Department of Mechanical Engineering
at RIT, during the winter quarter 1994-5. Notes prepared for the course
as well as the material prepared by the authors over several years either
working separately or jointly have developed into the book. In particu-
lar, the authors worked together during the first author’s (RBH) numer-
ous visits to the Institute of Fundamental Technological Research of the
Polish Academy of Sciences in Warsaw, and the second author’s (JI) visits
at RIT as a Visiting Professor in 19945 and as a Short-Term Scholar in
1998.

The authors wish to thank Ms. Agata Buczynska and Mrs. Grazyna
Wasilewska for typing the manuscript in LaTeX, and Mrs. Mariola Rejmund
for preparing the figures in an electronic form. The assistance of Mrs. Elzbieta
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Mréwka-Matejewska in an over-all computer preparation of the book is also
warmly acknowledged. Also, the authors express their sincere appreciation
to the Taylor & Francis editors, especially to Bob Rogers, Brandy Mui,
and Tony DeGeorge, for the effective and friendly cooperation during the
publication of the book.

Richard B. Hetnarski
Jozef Ignaczak
October 2003



Notation

Throughout the book a direct notation as well as Cartesian coordinates
are used. Terminology and general scheme of the notation follow that of
M. E. Gurtin [The Linear Theory of Elasticity, Encyclopedia of Physics,
Chief Editor S. Fliigge, vol. VIa/2, Editor C. Truesdell, Springer, Berlin,
1972]. In particular, scalars appear as italic light face letters, vectors are
written as lower case letters in bold face, second-order tensors as upper case
letters in bold face, and fourth-order tensors as upper case sans-serif letters
in bold face. Also, within a section the same letters are used for quantities
other than those listed below.

List of Symbols

Symbol Name

A Second-order tensor, Beltrami solution, thermal
expansion tensor

A(m) Acoustic tensor for a direction m

Body

Second-order tensor

Elasticity tensor

Torsional rigidity

Finite strain tensor

Young’s modulus

Three-dimensional Euclidean space

Two-dimensional Euclidean space

Infinitesimal strain tensor

Normal part of E with respect to a plane

El Tangential part of E with respect to a plane

HEHmmmUoOWEw
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xxii NOTATION

Symbol Name

Ep(E) Strain energy density of a progressive wave

Ep(EY) Normal strain energy density

Es(S) Stress energy density of a progressive wave

Es(S1H) Normal stress energy density

Es(Sh Tangential stress energy density

F Airy stress function, force

F Deformation gradient

F{-} Functional

G Shear modulus, Green’s function

H(-) Heaviside’s function

H Harmonic second-order tensor field

H Compatibility related fourth-order tensor

1 Moment of inertia of a cross section

J Polar moment of inertia of a cross section

K Stress concentration factor

K, Displacement concentration factor

K(t) Kinetic energy

K Compliance tensor

L Laplace transform, length

M Bending moment

M3 Torsion moment

M Stress-temperature tensor

M et (f) Mean value of a function f over the surface of a
sphere with its center at x and of radius ct

Neet(f) Two-dimensional counterpart of My «¢(f)

0) Origin, zero vector, zero tensor

P Part of B, concentrated force

P(t) Stress power

Q Heat supply field, shear force

Q Orthogonal tensor

R Region in E3, distance between two points

S Stress tensor

§(B) Mean stress

S+ Normal part of S with respect to a plane

sl Tangential part of S with respect to a plane

T Temperature change, time interval

Uc{E} Strain energy

u(t)

Total energy of B at time ¢
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Symbol Name

U(l,t) Stress energy of a semi-infinite cylinder B([) stored
over time interval [0, ]

vV Vector space associated with E?

L% Rotation tensor

w Internal heat generated per unit of volume per unit
of time

W(E) Stored energy function

W'(S) Complementary strain energy

W(S) Stress energy density

Wi{-} Functional involving convolutions

a Direction of motion of a progressive wave

b Body force

c Velocity of propagation, specific heat

c Irrotational velocity

&) Isochoric velocity

c(8Y) Velocity of a stress wave

e Unit vector along the axis of symmetry of a
transversely isotropic body

e Orthonormal basis

f Pseudo-body force field

g Galerkin vector field

g(P) Linear momentum of P

h(P) Angular momentum of P

i v/—1, function with the values i(t) = ¢

k Bulk modulus, polar radius of gyration of a cross
section, spring stiffness, thermal conductivity

k Unit vector along x3 axis

14 Concentrated force

m Direction of propagation

m The constant }f—,’ja, also mass of P

n Outward unit normal on 0B

P Pressure, admissible process, elastic process,
thermoelastic process

S Surface traction

s Prescribed surface traction

s Admissible state, elastic state, thermoelastic state

t Time

u Displacement vector
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Symbol Name

u Prescribed displacement on boundary

ug Initial displacement

g Initial velocity

v(B) Volume of B

w Rigid displacement

X,y Points in space (vectors)

iy Cartesian components of x

« Coefficient of linear thermal expansion, angle of
twist, scalar field in a tensorial solution of
elastodynamics

I} Vector field in a tensorial solution of
elastodynamics

v The constant (3X\ + 2u)a

o(+) Dirac delta function

0ij Kronecker’s delta

oV (D) Volume change

€iik Three-dimensional alternator

€all Two-dimensional alternator

0 Absolute temperature

t Reference temperature

K Thermal diffusivity

A Lamé constant, wave length

7 Lamé constant (shear modulus)

v Poisson’s ratio

P Density

o Normal component of a stress vector

T Dimensionless time, shear stress

% Scalar field in Boussinesq-Papkovitch-Neuber
solution, scalar field in Green-Lamé solution

o) Thermoelastic displacement potential, Prandtl’s
stress function, biharmonic function

X Biharmonic scalar field in Love’s solution

X Second-order tensor field of Galerkin type in
elastodynamics

P Warping function

1 Vector field in Boussinesq-Papkovitch-Neuber

solution, vector field in Green-Lamé solution
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Symbol

Name

w

syni
skw
tr
®

curl

div

A = o
02, 03

[']
da
dv
()
()

Rotation vector, vector field in a tensorial

solution of elastodynamics

Unit tensor

Symmetric part of a tensor

Skew part of a tensor
Trace of a tensor
Tensor product of two vectors

Gradient

Symmetric gradient

Curl
Divergence
Laplacian

Wave operators

Convolution

Jump in a function
Element of area
Element of volume
Time derivative
Transpose of a tensor




Some Quantities in SI Units

= [J] (area moments of inertia)
5 i1 = [G] = [E] = [K] = [si] = [p] = [A] = [u]
E = Young’s modulus, k = bulk modulus,
= pressure, A, u = Lamé constants)
= [l;] = [F] (Q = shear force, F' = force)
(heat supply field)
Qo] (in Section 11.2)
Qo] (in Section 12.2)
Q(] (in Section 13.2)
So| [in Egs. (11.2.24) and (13.2.10)]
T] = (6] = [6o]
| (stored energy)
W] (internal heat generated per unit of
volume per unit of time)
] (body force per unit of volume)

] [e1] = [e2] (velocity)
| (specific heat)

—~

bi

O

¢
g(P);] (linear momentum)
h(P));] (angular momentum)
k| (thermal conductivity)

m] = [a]
il = [(uo)s] = [wi] = [L]
A= (3X+2u)q]
k] (thermal diffusivity), k = k/(p - ¢)
p] (density)
¢] (thermoelastic displacement potential)

~
&

.—”—u—..—..—..—”—”—‘r—r——r—”—\
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m 4

Pa = N/m?

N

K/s

K-m?

K-m?

K/s

kg/(m-s?) or N/m?
K

J/m.'ﬁ

J/(m? s) = W/m?
N/m?

m/s

J/(kg-K)

(kg:m)/s
(kg-mZ)/S or N-m-s
W/(m K)

1/K

N/(m?- K)

m? /s

kg /m?

HIZ



xxviii SOME QUANTITIES IN SI UNITS

Values of the specific heat ¢, the thermal conductivity k, the density p, and
the thermal diffusivity & for common materials may be found in
M. N. Ogzisik, Heat Conduction, John Wiley, New York, 1980, p. 2-7.

Values of the coefficient of linear thermal expansion « and Young’s modulus
E for common materials may be found in N. Noda, R. B. Hetnarski, and
Y. Tanigawa, Thermal Stresses, first edition, Lastran, Rochester, 2000, p. 7,
or second edition, Taylor & Francis, New York, 2003, p. 7.



