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Preface

=5

The aim of this book is to introduce the reader to the geometric theory of
algebraic varieties, in particular to the birational geometry of algebraic
varieties.

This volume grew out of the author’s book in Japanese published in 3
volumes by Iwanami, Tokyo, in 1977. While writing this English version, the
author has tried to rearrange and rewrite the original material so that even
beginners can read it easily without referring to other books, such as
textbooks on commutative algebra. The reader is only expected to know the
definition of Noetherin rings and the statement of the Hilbert basis
theorem.

The new chapters 1, 2, and 10 have been expanded. In particular, the
exposition of D-dimension theory, although shorter, is more complete than
in the old version. However, to keep the book of manageable size, the latter
parts of Chapters 6, 9, and 11 have been removed.

I thank Mr. A. Sevenster for encouraging me to write this new version,
and Professors K. K. Kubota in Kentucky and P. M. H. Wilson in Cam-
bridge for their careful and critical reading of the English manuscripts and
typescripts. 1 held seminars based on the material in this book at The
University of Tokyo, where a large number of valuable comments and
suggestions were given by students Iwamiya, Kawamata, Norimatsu,
Tobita, Tsushima, Maeda, Sakamoto, Tsunoda, Chou, Fujiwara, Suzuki,
and Matsuda.

Fall 1981 Shigeru litaka
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Introduction

The purpose of algebraic geometry is to study comprehensively varieties
defined by a set of polynomial equations in many variables

FiOk), My iy ., Xyd0)

Properties of varieties should be independent of the choice of coordinate
systems. For example, the variety defined by X, =0 (r = 1, n = 2) is equiv-
alent to that defined by Y, — Y3 =0 (r= 1, n = 2) under the invertible
transformation X; = Y,, X, = Y, — Y3. This equivalence is interpreted as
the existence of an isomorphism of rings

KXy X2l _ KDY, Ys)
) (Y- Y

Thus, the study of a set of polynomial equations can be reduced to the
study of a commutative ring k[X, ..., X,]/a, where a is an ideal generated
by fi, ..., f.. From this viewpoint, one arrives naturally at the concepts of
affine schemes and then of schemes. ,

However, ever since the last century, it has been believed that the more
essential properties of varieties are those which are birationally invariant.

A plane curve is defined by an irreducible polynomial ¢(X, Y). The degree
of ¢ is said to be the degree of the curve. Plane curves defined by irreduc-
ible polynomials f; and f, are birationally equivalent if the field Q(k[X, Y]/
(fy)) is isomorphic to Q(k[X, Y]/(f3)), where Q(R) denotes the field of frac-
tions of the integral domain R.

The degree is not, however, a birational invariant. As Abel noted, the
number of linearly independent Abelian differentials of the first kind (also
called regular 1-forms) on a given curve C is more important than the
degree, since it is a birational invariant. This number is called the genus of

1



2 Introduction

C, denoted by g(C). Curves can be classified into the following three classes
according to their genera:

The class 1: g(C)=0.
The class II: g(C) = 1.
The class ITI: ¢(C) = 2.

A similar birational classification for 2-dimensional varieties (called sur-
faces) was obtained by Italian algebraic geometers around the beginning of
our own century.

Given a variety V of dimension n, many birational invariants can be
defined, such as the plurigenera, the i-th irregularity, and the Kodaira di-
mension. Let x(V) denote the Kodaira dimension of V, which can take the
values — o0, 0, 1, ..., n. By means of the Kodaira dimension, varieties of
dimension n can be classified into n + 2 classes. When n = 1, this classifi-
cation agrees with that given by the genus.

Many fundamental properties of the Kodaira dimension have been
found, giving some basic information about the structure of varieties.

Let V be a variety of dimension n and suppose that x(V) > 0. Then by
Theorem 10.3 (fibering theorem), there exists a dominating morphism
f: V*— W such that (1) V* is birationally equivalent to V, (2) dim W
= k(V), (3) general fibers / ~'(x) are irreducible, and (4) for a (strictly) gen-
eral point x of W, k(f ~ Y(x)) = 0. :

Varieties V with x(V) = n are said to be of general type or of hyperbolic
type. Roughly speaking, almost all varieties are of hyperbolic type and these
have rather general properties in common. For example, if V is of hyperbol-
ic type, then the automorphism group Aut(V) of V' is a finite group.

The number of linearly independent regular 1-forms on a complete non-
singular variety V is also a birational invariant, denoted by ¢(V). In par-
ticular, if dim V' = 1, then g(V) turns out to be the genus of V. In general,
an Abelian variety of dimension g(7”), the Albanese variety Alb(V), is associ-
ated with V, together with the Albanese map ay: V — Alb(V).

Recently Kawamata proved that if (V)= 0, then a, is surjeetive and
general fibers oy '(x) are irreducible. Thus in the case where x(V) = 0 and
g(V) > 0, the structure of V can be studied using Albanese maps. However,
nothing is known about ¥ when x(V) = g(V) = 0. If dim V = 2, it has been
shown that such-a V is birationally equivalent to a K3 surface or an
Enriques surface.
~In the case where (V) = —co and ¢(V) > 0, consider again the Albanese
map ay: V—> Alb(V). One has a morphism y: V — Z obtained from the
Stein factorization of a,: V — ay(V). Then it is conjectured that x(y ~'(x))=
‘—ao for a general point x of Z. Actually, this has been proved for n < 3 (by
Enriques for n = 2; by Viehweg for n = 3). The case where (V) = —co and
q(V) = 0 seems the most difficult case to study. Whenn=2,sucha Visa
rational surface, ie., a surface birationally equivalent to P' x P'. This fact,
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dscovered by Castelnuovo, was the starting point of the classification
theory of algebraic surfaces by the Italian school. But in the higher dimen-
sioral case, nothing is known about such V.

Clapter 10 may serve as a guide to this rapldly developing theory of
biratiynal classification of varieties.

It is unreasonable to say that only birationally invariant properties are
worth :tudying. For instance, the affine line A' is quite different from
G, = A — {0}, which are both very important. However, they are biration-
ally equivalent. )

Any vaiiety is birationally equivalent to a complete variety. Thus, when
considering noncomplete varieties and studying their properties, we can no
longer use »rirational equivalence. However, in this case, a more delicate
equivalence telation, called proper birational equnvalcnce is introduced (see
Chapter 2). One can find many proper-birational invariants such as the
logarithmic genera, logarithmic irregularities, and logarithmic Kodaira di-
mension, which are defined by making use of logarithmic forms. A proper
birational equivalence between affine normal varieties is just an isomor-
phism between them; hence the corresponding normal rings are isomorphic.
Thus, in our study of proper birational properties of varieties, the theory of
(normal) rings and birational geometry are unified; thus the theorems on
Kodaira dimension could be translated into ring theory and so on.

Algebraic geometry should be a synthesis of algebra and geometry. But,
in practice, it has been an algebraic approach to geometry. Our new bira-
tional geometry (e.g., proper birational geometry) is not only a revival of .,
old birational geometry but is also a beginning of some grand unified
theory of algebra and geometry. i



Chapter 1

Schemes

§1.1 Spectra of Rings

a. We begin by defining spectra of commutative rings with identity, which
are the base spaces of the affine schemes introduced in §1.11.

In all that follows, commutative rings A, B, ... with identity elements
14, 1p,... are referred to simply as rings, and ring homomorphisms
¢@: A— B are assumed to satisfy ¢(1,) = 15.

Definition. The spectrum of a ring A is the set of all prime ideals of A,
denoted by Spec 4.

Note that the ring A itself is not considered to be a prime ideal.

If o : A— B is a ring homomorphism and p is a prime ideal of B, then
¢ '(p) is also a prime ideal of A. We note that 1, ¢ ¢~ '(p), since 15 ¢ p
and ¢(1,) = 1.

Definition. The mapping “¢: Spec B> Spec A defined by “p(p) = ¢ " '(p) is
said to be the mapping associated with .

ExaMpLE 1.1. (i) For the trivial ring 0, we have Spec 0 = (.

(ii) If k is a field (a field is always assumed to be nontrivial, i.c.,k # {0}),
then Spec k = {(0)}.

(iti) Spec Z = {(0)} J {(p)|p is a prime number}.

(iv) If k[X] is a ring of polynomials over an algebraically closed field &,
then

Spec k[X] = {(0)} U {(X —2)]a € k},
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which can be written as Spec k[X] = {*} () k with the abbreviations
x=(0), 2 =(X —a). _ ~

(v) If k[X, Y] is a-polynomial ring in two variables over an algebraically
closed field k, then

Spéc kX, Y] = {(0)} U {(f)| fisa nonconstant irredt}cible
polynomial in X and Y} (J {(X — &, Y.— B)|(«, B) € k*}.

PROOF OF (V). Clearly, it suffices to show that every nonprincipal prime ideal
p is-of the form (X — a, Y — B). Let f € p\{0} be a polynomial with deg , /
minimal such that f is irreducible. Since p is nonprincipal, there is an
element g € p\(f). By the Euclidean algorithm in the ring k(X)[Y], there is a
p € k[X]\(0) and g, r € k[X, Y] satisfying pg = qf + r, where either r = 0 or
deg yr < deg f. It follows that r =0 by the choice of f and because
r=pg—qfep. But then pe(f) because (f) is a prime ideal,
pg =qfe€(f), and g ¢ (f). Thus deg , f < deg \p = 0; ie., f € k[X]. Since k
is algebraically closed and f € k[X] is irreducible, f must be linear and so p
contains a polynomial of the form X — « with & € k. Interchanging the roles
of X and Y, one also sees that p contains a polynomial of the form Y — g
with § € k. But then p contains the maximal ideal (X — a, Y — B) and hence
must be equal to.it (cf. Exercise 1.1).

The reader can easily verify that the maximal ideals of k[X, Y] are
precisely those of the form (X — &, Y — B) with (2, B) € k% d

b. We shall introduce a topology on Spec 4. For any ideal a of A4, define the
set V(a) to be {p e Spec 4|p 2 a}, and for any f€ A, define V(f) to be
{p € Spec A|p = f}. Then, V(f)= V(fA4) and the following properties are -
easily verified:

(1) V(0) = Spec A, V(1) = &.
(i1) If a and b are ideals such that a < b, then V(a) 2 V(b).
(iii) V(a n b) = V(ab) = V(a) u V(b). In particular, V(fg) = V(f) u V(g)
forallf, g € A.
(iv) If {a;[ 4 € A} is a set of ideals of A, then V(Y ;ca a2) = [Jiea V(ay).
(v) Forany ideal a of A4, if ¢: A— A/a is the natural homomorphism then
“@p: Spec(A/a)— Spec A is one-to-one and Im “p = V(a).

Definition. The topology on Spec A is introduced by taking the sets in
{V(a)|a ideals of A} as the closed scts.
The open sets of this topology are just those of the form
D(a) = Spec A\V(a) = {p € Spec A|p D a}.

When expressed in terms of the D(a), properties (i) through (v) will be
referred to as properties (i') through (v'), respectively. For example, in view
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of the property (iv'), if a is the ideal generated by { f;| 1 € A}, then
D(a)= |J D(f3),

AeA
where D(f) = Spec A\V(f) = {p € Spec A|p 3 [}.
Note that the sets D(f) form an open base for the topology of Spec A.
The following properties of the mapping “p: Spec B— Spcc A associ-
ated with @: A— B are easily venﬁed

Proposition 1.1

(i) “¢ is continuous. More precisely, if f € A, then (“p)” {(D(f)) = D(¢(f)),
and if a is an ideal of A, then (“@)™*(V(a)) = V(aB), where aB is the ideal
of B generated by ¢(a).

(ii) For any ideal b of B, one has

“@(V(b)) = V(g '(b).

(i) If @3 A— A/a is the natural homomorphism, then “¢: Spec A/a— Spec A
is a homeomorphism of Spec A/a onto V(a).
(iv) If ¢: A— B is surjective, then “¢ is a homeomorphism of Spec B onto the
closed subset V(Ker ¢) of Spec A.
(v) On the other hand, if “p: Spec B— Spec A is surjective, then V(Ker
@) = V(¢ '(0)) = Spec A. Hence Ker ¢ is a subset of every pnme ideal
of A.

v

\
For the proof of the next propositions, we need a result from ring theory.

Definition. If a is an ideal of A, the radical \/; is {ae A|a™ € a for some
integer m > 0}. /(0,) is said to be the nilradical of A, which consists of all
nilpotent elements of 4.

\/; is an ideal containing a.

¢. The following result is a key-lemma in the first stage of the theory of
spectra.

Lemma 1.1. If a is a proper ideal (i.e., a # A) of A, then there exists a
maximal ideal containing a.

Proor. Let § be the set of all proper ideals of A containing a. Then § is not
empty, since a € § The set § is naturally ordered by set inclusion, ie.,
a, < a, if and only if a, = a,. We shall show that § is an inductively
ordered set. In fact, letting {a,|1 € A} be an arbitrary linearly ordered
subset of §, define a, = U iea ;, which becomes a proper ideal, ic., a, €
& and a, < a, for any 4 € A. Hence, the ordered set § is inductive.

By Zorn’s Iemma & has a maximal element m, which is a maximal ideal
containing a. ' O



§1.3 Rings of Functions, the Case A4, 7

Corollary

(i) Spec A = J if and only if A = 0.
(i) V(a)= Fifand only ifa = A

ExXAMPLE 1.2. Let a,, ..., a, € A. If there is no prime ideal containinga,, ...,
a,, then there exist by, ..., b, in A such that a,b; + -+ + a,b, = .

PROOE. Let a = Z;-:l a;A. If a # A, then there exists a prime ideal p con-
‘taining a by Lemma 1.1. O

§1.2 Examples of Spectra as Topological Spaces

a. In X = Spec Z, the closed sets are X, &, and th.e sets of the formp
{(p1), -+, (py)}, i.e., the finite sets of prime numbers.

b. Let k be an algebraically closed field and k[X] be the corresponding
polynomial ring. Then as was seen in Example 1.1.(iv), Spec k[X] can be
written as {*} U k. Since any ideal of k[X] is either (0), (1), or (f), where
f € k[X]\k, the closed sets are {*} U k, &, and the sets of the form {4,, ...,
4,y where the 4; are the roots of f(x) = 0 for such an f.

Note that in this case a union of finitely many closed sets Fy, F,, ..., F,
none of which is the whole space is not the whole space. In other words, if
Ui, ..., U, are nonempty open sets, then U; n -+ n U, is not empty.

Now, let A = k[X, Y] as in Example 1.1.(v). Then
Spec A = {x}. U {(f)| fe k[X, Y]\k is irreducible} u k>

If we consider k* as the topological space with the topology induced from
Spec A, then the closed sets are k?, &, and finite unions of the finite sets
and the sets of the form {(a, b) € k2|<p(a, b) =0} for ¢ e k[X, Y]. This is
easily checked, since A is Noetherian.

c. Let A =k[[X]], the formal power series ring over a field k. Then
Spec A = {(0), (X)}. The closed sets are {(0), (X)}, {(X)}, and &¥. Hence, the
closure of (0) is the whole space. Spec 4 is a topologxcal space with two
points which is not discrete.

§1.3 Rings of Fractions, the Case 4,

Let A be a ring. For any eleméntfof A, define A, to be A[X]/(fX —1),
where A[X] is the ring of polynomials over 4. Letting ¥ {a) = a mod(fX-
— 1) for a e 4, and ¢ = X mod(fX — 1), one has the ring homomorphism
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Yy A— Ay and ¢ satisfies Y (/) - £ = 1. Thus we denote £ by 1/f. A, is then
generated by 1/f as an A-algebra, ie., A, = A[1/f]. For simplicity, we write
a/1 instead of y (a).

Proposition 1.2.

(i) a/1 = b/1 if and only if f"a = f"b for some n > 0.
(i) Ay = 0if and only iff is a nilpotent element.
(iii) (Universal mapping property). For every ring homomorphism ¢: A— B

’ such that ¢(f) has a multiplicative inverse, there is a unique ring homo-
morphism ¢*: A;— B such that ¢* oy, = ¢. (This means that among
all pairs (B, @) of rings B and homomorphisms ¢: A— B such that ¢(f) is
invertible, the pair (A;, ) is the universal one.)

(iv) “Y,: Spec A,— Spec A is a homeomorphism onto D(f), i.e., Spec
A; = D(f).

Proor. (i) It suffices to prove this for b =0. a/l =0 if and only if a €
(fX — 1), i.e., there exist n > 0 and b, ..., b, € A such thata = (fX — 1)b,
+ b X+ -+ + b, X"),ie, )

a=—by,fbo—b;=0,...,fb,_; —b,=0,fb,=0. (%)

If () holds, then f"*'a= —f"*1py =-+-= fb, =0. Conversely, if /"*'a
=0, by taking b; = —f'a for 0 <i <n, then () holds. So there exists
n >0 such that f"*'a =0 if and only if () holds, which is equivalent to
a/l =0. ;

(i) This follows from (i) and the fact that 4, =0 if and only if
1/1=1,,=0.

(i) Define a ring homomorphism @®: A[X]— B by ®|,=¢ and
®(X) = 1/¢(f). Then ®(fX — 1) = &(/)®X) — 1 = o(f) (/@(f)) — 1 = 0;
hence ® determines a ring homomorphism ¢*: 4,— B such that o*(a/f")
= p(a)/o(fY, ie, @* oy, = ¢. Since A; = A[1/f], any ring homomor-
phism ¢": A, — B such that ¢’ o ¥ = ¢ becomes ¢*.

(iv) The proof is left to the reader, since the proof of the more general
case will be given in §1.4 (cf. Lemma 1.3). O

Corollary. The kernel of y, is the ideal I(f)=1{ae Alaf™ =0 for some
m> 1}.

Proposition 1.3. Lei a be a proper ideal of a ring A. Then

Va= N ».

peV(a)

Prook. Since \/; = p for any prime ideal p, it follows that J& = R R
Let f¢ \/;. Then a =fmod a is not a nilpotent element of A4/a; hence,
Spec(A/a), is not empty by Lemma '1.1. By V(a) n D(f) = D(a) ~ Spec(4/a),,
we have p, € V(a) n D(f); hence p;, 2 aand f ¢ p;. Thus f ¢ ﬂ,ey(,, p. O
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Corollary. Let a and b be ideals of A.

(i) V() < V(b)if and only :fﬁ >./b.
(ii) V(a) = V(b) if and only if b.
(iii) V(a) = Spec A if and only ifa < /(0,).
(iv) D(f) = & if and only if fis nilpotent.

Proor. All the assertions follow immediately from Proposition 1.3. O

Proposition‘ 1.4. Let ¢:A—> B be a homomorphism of rings. Then for any
ideal b of B,

(i) The closure of “p(V (b)) is V(e ~'(b)).
(ii) “o(Spec B) is dense in V(Ker ¢).
(ii) “@ is dominating (i.e., “p(Spec B) is dense in Spec A) if and only if Ker
(04).

Proor. (i) If %@(V(b)) < V(f) for some fe€ A, then any q € V(b) satisfies
“(q) = ¢ '(a) 3 f; hence q > ¢(f). But since \/b=(),cv@ a by Prop-
osition 1.3, one has \/B 3 ¢(f) and so (p-'l(\/l;) 3 f; hence

V()2 Vie ' /b) = V(e~'®).

This implies that the closure of “p(V(b)) includes V(¢ ~'(b)). By Proposition
1.1.(ii), we obtain the assertion.
(i1) This follows immediately from (i).
(iii) By assertion (ii), “¢ is dominating if and only if V(Ker ¢) = Spec A.
By Corollary (iii) to Proposition 1.3, V(Ker @) = V(0,) if and only if Ker
S 1/(0y). O

Corollary. For any f € A, D(f) is dense in Spec A if and only if I(f) S +/(0,).

PRrOOF. Since “Y;: Spec A;— Spec A is a homeomorphism onto D(f), we
can apply Proposition 1.4. O

. §1.4 Rings and Modules of Fractions

. a. Let M be an A-module and S be a multiplicative subset of 4 (ie, 1 € S,

and st € S whenever s, t € S). We want to construct the most general A4-

module N such that for any s € S and b € N, sx = b is solvable with x € N.
On the Cartesian product S x M, we define the following relation:

(s, m) ~ (s', m)<=>t(s’m — sm’) =0 for some t € S.



