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_PREFACE

This textbook is intended primarily for an undergraduate course in classical mechanics
taken by students majoring in physics, physical science, or engineering. It is assumed
that the student has taken a year of calculus-based general physics and a year of differ-
ential/integral calculus. It is highly recommended that a course in differential equations
and matrix algebra be taken prior to or concurrently with this course in mechanics.

This sixth edition is the same in scope as the previous edition. New material has
been introduced, and some old material has been eliminated. Great effort has been
taken to clarify some of the more difficult concepts, and many figures have been added
as a visualization aid. Several sections have been added that utilize the software tools
Mathcad and Mathematica as part of the problem-solving methodology. The problem
sets at the end of each chapter have been increased by about 25%, and many problems
requiring numerical solutions have also been added. Equations and figures have been
renumbered using a scheme that should make them much easier to find when referenced
somewhere else in the text—or by the instructor when lecturing or discussing problem
solutions.

A brief synopsis of each chapter follows. The chapters in bold font and the accom-
panying descriptions in italics font delineate the material that has been most extensively
modified in this new edition.

¢ Chapter 1: A brief introduction to vector algebra; concepts of velocity and
acceleration.

* Chapter 2: Newton’s laws of motion; emphasis on motion in one dimension. In-
troduction to numerical problem solving using Mathcad: vertical fall through a
Sfluid.

* Chapter 3: Harmonic motion, resonance, the driven oscillator. Numerical so-
lutions of nonlinear oscillations and chaotic motion. Fourier techniques.

+ Chapter 4: Motion of a particle in three dimensions. Introduction to the con-
cepts of conservative forces and potential energy. Introduction to numerical prob-
lem solving using Mathematica; projectile motion in a resistive medium.

¢ Chapter 5: The analysis of motion in a noninertial frame of reference; the ap-
pearance of fictitious forces. Numerical solution of a problem involving motion in
a rotating frame of reference.

* Chapter 6: Expanded discussion of Newtonian gravitation; conic sections, or-
bits, and motion involving central forces. Criteria for orbital stability. Rutherford
scattering.

iii
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* Chapter 7: Systems of many particles. The restricted three-body problem; nu-
merical solution of three-body orbital motion; the Lagrangian points. Conserva-
tion laws and particle collisions. Rocket motion.

¢ Chapter 8: Rotation of a body about a fixed axis; laminar motion of a rigid body;
moments of inertia.

» Chapter9: Expanded discussion of rotation of a rigid body in three dimensions.
Increased emphasis on the use of matrices and tensors to describe rotational mo-
tion. Numerical solutions of problems involving the rotation of bodies with differ-
ent principal moments of inertia. Analysis of gyroscopic motion.

* Chapter 10: Expanded discussion of Lagrangian mechanics. The use of both
Hamilton’s and D’Alembert’s principles to derive Lagrange’s equations of mo-
tion. The method of Lagrange multipliers to solve problems with forces of con-
straint. The concept of generalized forces. Hamiltonian mechanics and conserva-
tion principles.

* Chapter 11: Expanded discussion of coupled oscillators with increased empha-
sis on matrix techniques. Expanded discussion of normal coordinates and normal
modes of oscillation. Expanded discussion on solving the eigenvalue problem. Dis-
cussion of the loaded string and wave motion.

Worked examples abound. They are typically found at the end of each section in the
text. The problem set found at the end of each chapter contains problems that can be
solved analytically. It is followed by a computer problem set, containing problems that
are to be solved numerically, using either Mathcad or Mathematica (or any other soft-
ware tool available to the student). Appendix I presents two sample worksheets that were
generated in Mathcad and Mathematica in order to solve two specific numerical prob-
lems presented in the text. Answers to a few selected odd-numbered problems are given
at the end of the book. A list of units, physical constants, mathematical aids, formulae,
and discussions is also presented in the appendices.

A solutions manual is available to instructors upon adoption of the text. Saunders
College Publishing may provide complimentary instructional aids and supplements or
supplement packages to those adopters qualified under our adoption policy. Please con-
tact your sales representative for more information. If as an adopter or potential user
you receive supplements you do not need, please return them to your sales representa-
tive or send them to:

Attn: Returns Department
Troy Warehouse

465 South Lincoln Drive
Troy, MO 63379
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1.1 | INTRODUCTION

The science of classical mechanics deals with the motion of objects through absolute
space and time in the Newtonian sense. Although central to the development of classical
mechanics, the concepts of space and time would remain arguable for more than two
and a half centuries following the publication of Sir Isaac Newton’s Philosophie naturalis
principia mathematica in 1687. As Newton put it in the first pages of the Principia,
“Absolute, true and mathematical time, of itself, and from its own nature, flows equably,
without relation to anything external, and by another name is called duration. Absolute
space, in its own nature, without relation to anything external, remains always similar and
immovable.”

Ernst Mach (1838-1916), who was to have immeasurable influence on Albert Ein-
stein, questioned the validity of these two Newtonian concepts in The Science of Me-
chanics: A Critical and Historical Account of Its Development (1907). There he claimed
that Newton had acted contrary to his expressed intention of “framing no hypotheses,”
that is, accepting as fundamental premises of a scientific theory nothing that could not
be inferred directly from “observable phenomena” or induced from them by argument.
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Indeed, although Newton was on the verge of overtly expressing this intent in Book 111
of the Principia as the fifth and last rule of his Regulae Philosophandi (rules of reasoning
in philosophy), it is significant that he refrained from doing so.

Throughout his scientific career he exposed and rejected many hypotheses as false;
he tolerated many as merely harmless; he put to use those that were verifiable. But he
encountered a class of hypotheses that, neither “demonstrable from the phenomena nor
following from them by argument based on induction,” proved impossible to avoid. His
concepts of space and time fell in this class. The acceptance of such hypotheses as fun-
damental was an embarrassing necessity; hence, he hesitated to adopt the frame-no-
hypotheses rule. Newton certainly could be excused this sin of omission. After all, the
adoption of these hypotheses and others of similar ilk (such as the “force” of gravitation)
led to an elegant and comprehensive view of the world the likes of which had never
been seen.

Not until the late 18th and early 19th centuries would experiments in electricity and
magnetism yield observable phenomena that could be understood only from the vantage
point of a new space-time paradigm arising from Albert Einstein’s special relativity.
Hermann Minkowski introduced this new paradigm in a semipopular lecture in Cologne,
Germany in 1908 as follows:

Gentlemen! The views of space and time which T wish to lay before you have sprung
from the soil of experimental physics and therein lies their strength. They are radical.
From now on, space by itself and time by itself are doomed to fade away into the shad-
ows, and only a kind of union between the two will preserve an independent reality.

Thus, even though his own concepts of space and time were superceded, Newton most
certainly would have taken great delight in seeing the emergence of a new space—time
concept based upon observed “phenomena,” which vindicated his unwritten frame-no-
hypotheses rule.

1.2 | MEASURE OF SPACE AND TIME. UNITS'

In this text we shall assume that space and time are described strictly in the Newtonian
sense. Three-dimensional space is Euclidian, and positions of points in that space are
specified by a set of three numbers (x, y, z) relative to the origin (0, 0, 0) of a rectangular
Cartesian coordinate system. A length is the spatial separation of two points relative to
some standard length.

Time is measured relative to the duration of reoccurrences of a given configuration
of a cyclical system—say, a pendulum swinging to and fro, an Earth rotating about its
axis, or electromagnetic waves from a cesium atom vibrating inside a metallic cavity. The
time of occurrence of any event is specified by a number ¢, which represents the number
of reoccurrences of a given configuration of a chosen cyclical standard. For example, if
1 vibration of a standard physical pendulum is used to define 1 s, then to say that some
event occurred at t = 2.3 s means that the standard pendulum executed 2.3 vibrations
after its “start” at t = 0, when the event occurred.

1A delightful account of the history of the standardization of units can be found in H. A. Klein, The Science of
Measurement—A Historical Survey, Dover Publ., Mineola, 1988, ISBN 0-486-25839-4 (pbk).
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All this sounds simple enough, but a substantial difficulty has been swept under the
rug: Just what are the standard units? The choice of standards has usually been made
more for political reasons than for scientific ones. For example, to say that a person is
6 feet tall is to say that the distance between the top of his head and the bottom of his
foot is six times the length of something, which is taken to be the standard unit of 1 foot.
In an earlier era that standard might have been the length of an actual human foot or
something that approximated that length, as per the writing of Leonardo da Vinci on the
views of the Roman architect—engineer Vitruvius Pollio (first century B.C.E.):

... Vitruvius declares that Nature has thus arranged the measurements of a man: four
fingers make 1 palm and 4 palms make 1 foot; six palms make 1 cubit; 4 cubits make once
a man’s height; 4 cubits make a pace, and 24 palms make a man’s height . . .

Clearly, the adoption of such a standard does not make for an accurately reproducible
measure. An early homemaker might be excused her fit of anger upon being “short-
footed” when purchasing a bolt of cloth measured to a length normalized to the foot of
the current short-statured king.

The Unit of Length

The French Revolution, which ended with the Napoleanic coup d’etat of 1799, gave birth
to (among other things) an extremely significant plan for reform in measurement. The
product of that reform, the metric system, expanded in 1960 into the Systéme Interna-
tional d’Unités (SI).

In 1791, toward the end of the first French National Assembly, Charles Maurice de
Talleyrand-Perigord (1754—1838) proposed that a task of weight and measure reform be
undertaken by a “blue ribbon” panel with members selected from the French Academy
of Sciences. This problem was not trivial. Metrologically, as well as politically, France was
still absurdly divided, confused, and complicated. A given unit of length recognized in
Paris was about 4% longer than that in Bordeaux, 2% longer than that in Marseilles, and
2% shorter than that in Lille. The Academy of Sciences panel was to change all that.
Great Britain and the United States refused invitations to take part in the process of unit
standardization. Thus was born the antipathy of English-speaking countries toward the
metric system.

The panel chose 10 as the numerical base for all measure. The fundamental unit of
length was taken to be one ten-millionth of a quadrant, or a quarter of a full meridian. A
surveying operation, extending from Dunkirk on the English Channel to a site near Bar-
celona on the Mediterranean coast of Spain (a length equivalent to 10 degrees of latitude
or one ninth of a quadrant), was carried out to determine this fundamental unit of length
accurately. Ultimately, this monumental trek, which took from 1792 until 1799, changed
the standard meter—estimated from previous, less ambitious surveys—by less than
0.3 mm, or about 3 parts in 10,000. We now know that this result, too, was in error by a
similar factor. The length of a standard quadrant of meridian is 10,002,288.3 m, a little
over 2 parts in 10,000 greater than the quadrant length established by the Dunkirk—
Barcelona expedition.

Interestingly enough, in 1799, the year in which the Dunkirk—Barcelona survey was
completed, the national legislature of France ratified new standards, among them the
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meter. The standard meter was now taken to be the distance between two fine scratches
made on a bar of a dense alloy of platinum and iridium shaped in an X-like cross section
to minimize sagging and distortion. The United States has two copies of this bar,
numbers 21 and 27, stored at the Bureau of Standards in Gaithersburg, MD, just outside
Washington, DC. Measurements based on this standard are accurate to about 1 part in
106. Thus, an object (a bar of platinum), rather than the concepts that led to it, was
established as the standard meter. The Earth might alter its circumference if it so chose,
but the standard meter would remain safe forever in a vault in Sevres, just outside Paris,
France. This standard persisted until the 1960s.

The 11th General Conference of Weights and Measures, meeting in 1960, chose
a reddish-orange radiation produced by atoms of krypton-86 as the next standard of
length, with the meter defined in the following way:

The meter is the length equal to 1,650,763.73 wavelengths in vacuum of the radiation
corresponding to the transition between the levels 2 p'© and 5 d® of the krypton-86 atom.

Krypton is all around us; it makes up about 1 part per million of the Earth’s present
atmosphere. Atmospheric krypton has an atomic weight of 83.8, being a mixture of six
different isotopes that range in weight from 78 to 86. Krypton-86 composes about 60%
of these. Thus, the meter was defined in terms of the “majority kind” of krypton. Stan-
dard lamps contained no more than 1% of the other isotopes. Measurements based on
this standard were accurate to about 1 part in 103

Since 1983 the meter standard has been specified in terms of the velocity of light. A
meter is the distance light travels in 1/299,792,458 s in a vacuum. In other words, the
velocity of light is defined to be 299,792,458 m/s. Clearly, this makes the standard of
length dependent on the standard of time.

The Unit of Time

Astronomical motions provide us with three great “natural” time units: the day, the
month, and the year. The day is based on the Earth’s spin, the month on the moon’s
orbital motion about the Earth, and the year on the Earth’s orbital motion about the Sun.
Why do we have ratios of 60:1 and 24:1 connecting the day, hour, minute, and second?
These relationships were born about 6000 years ago on the flat alluvial plains of Meso-
potamia (now Iraq), where civilization and city-states first appeared on Earth. The Me-
sopotamian number system was based on 60, not on 10 as ours is. It seems likely that the
ancient Mesopotamians were more influenced by the 360 days in a year, the 30 days in a
month, and the 12 months in a year than by the number of fingers on their hands. It was
in such an environment that sky watching and measurement of stellar positions first be-
came precise and continuous. The movements of heavenly bodies across the sky were
converted to clocks.

The second, the basic unit of time in SI, began as an arbitrary fraction (1/86,400) of
amean solar day (24 X 60 X 60 = 86,400). The trouble with astronomical clocks, though,
is that they do not remain constant. The mean solar day is lengthening, and the lunar
month, or time between consecutive full phases, is shortening. In 1956 a new second
was defined to be 1/31,556,926 of one particular and carefully measured mean solar year,
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that of 1900. That second would not last for long! In 1967 it was redefined again, in terms
of a specified number of oscillations of a cesium atomic clock.

A cesium atomic clock consists of a beam of cesium-133 atoms moving through an
evacuated metal cavity and absorbing and emitting microwaves of a characteristic reso-
nant frequency, 9,192,631,770 Hertz (Hz), or about 100 cycles per second. This absorp-
tion and emission process occurs when a given cesium atom changes its atomic configu-
ration and, in the process, either gains or loses a specific amount of energy in the form
of microwave radiation. The two differing energy configurations correspond to situations
where the spins of the cesium nucleus and that of its single outer-shell electron are either
opposed (lowest energy state) or aligned (highest energy state). This kind of a “spin-flip”
atomic transition is called a hyperfine transition. The energy difference and, hence, the
resonant frequency are precisely determined by the invariable structure of the cesium
atom. It does not differ from one atom to another. A properly adjusted and maintained
cesium clock can keep time with a stability of about 1 part in 10!2. Thus, in one year, its
deviation from the right time should be no more than about 30 us (30 X 10 =% s). When
two different cesium clocks are compared, it is found that they maintain agreement to
about 1 part in 1010.

It was inevitable then that in 1967, because of such stability and reproducibility, the
13th General Conference on Weights and Measures would substitute the cesium-133
atom for any and all of the heavenly bodies as the primary basis for the unit of time. The
conference established the new basis with the following historic words:

The second is the duration of 9,192,631,770 periods of the radiation corresponding to
the transition between two hyperfine levels of the cesium-133 atom.

So, just as the meter is no longer bound to the surface of the Earth, the second is no
longer derived from the “ticking” of the heavens.

The Unit of Mass

This chapter began with the statement that the science of mechanics deals with the
motion of objects. The final concept, with its accompanying unit, needed to specify com-
pletely any physical quantity.? That concept is mass, and the kilogram is its basic unit.
This primary standard, too, is stored in a vault in Sevres, France, with secondaries owned
and kept by most major governments of the world. Note that the units of length and time
are based on atomic standards. They are universally reproducible and virtually inde-
structible. Unfortunately, the unit of mass is not yet quite so robust.

A concept involving mass, which we shall have occasion to use throughout this text,
is that of the particle, or point mass, an entity that possesses mass but no spatial extent.
Clearly, the particle is a nonexistent idealization. Nonetheless, the concept serves as a
useful approximation of physical objects in a certain context, namely, in a situation where
the dimension of the object is small compared to the dimensions of its environment.
Examples include a bug on a phonograph record, a baseball in flight, and the Earth in
orbit around the Sun.

2The concept of mass will be treated in Chapter 2.



