Franz Roters, Philip Eisenlohr, % WILEY-VCH
Thomas R. Bieler, and Dierk Raabe

Crystal Plasticity Finite
Element Methods

in Materials Science and Engineering




Franz Roters, Philip Eisenlohr, Thomas R. Bieler,
and Dierk Raabe

Crystal Plasticity Finite Element Methods

in Materials Science and Engineering

WILEY-
VCH

WILEY-VCH Verlag GmbH & Co. KGaA




The Authors

Dr. Franz Roters

MPI fiir Eisenforschung GmbH
Abt. Mikrostrukturphysik
Max-Planck-Str. 1

40237 Diisseldorf

Germany

Dr.-Ing. Philip Eisenlohr

MPI fiir Eisenforschung GmbH
Abt. Mikrostrukturphysik
Max-Planck-Str. 1

40237 Diisseldorf

Germany

Prof. Dr. Thomas R. Bieler

Michigan State University

College of Engineering

Chemical Engineering and Materials Science
East Lansing, M1 48824

USA

Prof. Dr. Dierk Raabe

MPI fiir Eisenforschung GmbH
Abt. Mikrostrukturphysik
Max-Planck-Str. 1

40237 Diisseldorf

Germany

All books published by Wiley-VCH are carefully
produced. Nevertheless, authors, editors, and
publisher do not warrant the information
contained in these books, including this book, to
be free of errors. Readers are advised to keep in
mind that statements, data, illustrations,
procedural details or other items may
inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data:
A catalogue record for this book is available
from the British Library.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim

All rights reserved (including those of translation
into other languages). No part of this book may
be reproduced in any form — by photoprinting,
microfilm, or any other means — nor transmitted
or translated into a machine language without
written permission from the publishers. Regis-
tered names, trademarks, etc. used in this book,
even when not specifically marked as such, are
not to be considered unprotected by law.

Typesetting le-tex publishing services GmbH,
Leipzig

Printing and Binding Fabulous Printers Pte
Ltd, Singapore

Cover Design  Formgeber, Eppelheim

Printed in Singapore
Printed on acid-free paper

ISBN 978-3-527-32447-7



Franz Roters, Philip Eisenlohr,
Thomas R. Bieler, and Dierk Raabe

Crystal Plasticity Finite Element
Methods



Further Readings

Ochsner, A., Ahmed, W. (Eds.)
Biomechanics of Hard Tissues
Modeling, Testing, and Materials

2010
ISBN: 978-3-527-32431-6

Vaz Junior, M., de Souza Neto, E. A.,
Munoz-Rojas, P. A.

Advanced Computational
Materials Modeling

From Classical to Multi-Scale Techniques

2011
ISBN: 978-3-527-32479-8

Ochsner, A., Murch, G. E., de Lemos, M.
J.S. (Eds.)

Cellular and Porous Materials
Thermal Properties Simulation and
Prediction

2008
ISBN: 978-3-527-31938-1

Morris, A.

A Practical Guide to Reliable
Finite Element Modelling

2008
ISBN: 978-0-470-01832-3

Fish, J., Belytschko, T.

A First Course in Finite
Elements

2007
ISBN: 978-0-470-03580-1

Gottstein, G. (Ed.)

Integral Materials Modeling
Towards Physics-Based Through-Process
Models

2007
ISBN: 978-3-527-31711-0

Raabe, D., Roters, F., Barlat, F., Chen,
L.-Q. (Eds.)

Continuum Scale Simulation

of Engineering Materials
Fundamentals — Microstructures —
Process Applications

2004
ISBN: 978-3-527-30760-9



Notation

As a general scheme of notation, vectors are written as boldface lowercase letters
(e.g., a, b), second-order tensors as boldface capital letters (e. g., A, B), and fourth-
order tensors as blackboard-bold capital letters (e. g., A, B). For vectors and tensors,
Cartesian components are denoted as, a;, A;;, and A j;; respectively. The action of
a second-order tensor upon a vector is denoted as Ab (in components A;; b ;, with
implicit summation over repeated indices) and the action of a fourth-order tensor
upon a second-order tensor is designated as AB (A i By). The composition of
two second-order tensors is denoted as AB (A B ;). The tensor (or dyadic) product
between two vectors is denoted asa®b (a;b ;). All inner products are indicated by a
single dot between the tensorial quantities of the same order, for example, a-b (a;b;)
for vectors and A-B (A B; ;) for second-order tensors. The cross-product of a vector
a with a second-order tensor A, denoted by a x A, is a second-order tensor defined
in components as (a x A);; = €;a; A, where € is the Levi-Civita permutation
matrix. The transpose, AT, of a tensor A is denoted by a superscript “T,” and the
inverse, A~!, by a superscript “—1.” Additional notation will be introduced where
required.
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Preface

In the last 20 years, the Crystal Plasticity Finite Element Method (CPFEM) has de-
veloped into an extremely versatile tool for describing the mechanical response of
crystalline materials on all length scales from single crystals to engineering parts.
While this is clearly reflected by an ever increasing number of publications in scien-
tific journals, to date there is no comprehensive monograph on the topic. To change
this situation the authors have brought together their experience with CPFEM in-
to the current book. The aim of the book is to give an overview of the wide field
of models and applications in CPFEM at both small and large scales, and to give
some practical advice to beginners.

The book is organized as follows: The introduction gives a comprehensive
overview over the development of the application of CPFEM in the last 20 years.
The first part gives an introduction into the fundamentals on which the Crystal
Plasticity Finite Element Method is built. As it works in the interface of material
physics, continuum mechanics and applied computer science the reader finds one
chapter on each of these aspects. In the second part the Crystal Plasticity Finite
Element Method is introduced in detail. First, different single crystal constitutive
models are presented, including deformation mechanisms such as dislocation slip,
twinning, athermal transformations, and damage. Second, in view of large scale
applications, different homogenization schemes for the transition from single to
polycrystals are introduced. Finally, some numerical aspects of importance for the
practical implementation of CP as a material model in FEM codes are discussed.
The last and by far most elaborate part of the book is concerned with application ex-
amples. Naturally, most of these examples originate from the work of the authors,
plus some important examples taken from the work of other groups. The aim of
this part of the book is to give an overview on the numerous potential applications
of CPFEM in materials simulation and closes with an outlook of the authors on
future applications of the Crystal Plasticity Finite Element Method.

Diisseldorf, April 2010 Franz Roters
Philip Eisenlohr

Thomas R. Bieler

Dierk Raabe
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1
Introduction to Crystalline Anisotropy
and the Crystal Plasticity Finite Element Method

Crystalline matter is mechanically anisotropic. This means that the instantaneous
and time-dependent deformation of crystalline aggregates depends on the direction
of the mechanical loads and geometrical constraints imposed. This phenomenon
is due to the anisotropy of the elastic tensor, Figure 1.1, and to the orientation
dependence of the activation of the crystallographic deformation mechanisms (dis-
locations, twins, martensitic transformations), Figure 1.2.

An essential consequence of this crystalline anisotropy is that the associated me-
chanical phenomena such as material strength, shape change, ductility, strain hard-
ening, deformation-induced surface roughening, damage, wear, and abrasion are
also orientation-dependent. This is not a trivial statement as it implies that me-
chanical parameters of crystalline matter are generally tensor-valued quantities.
Another major consequence of the single-crystal elastic-plastic anisotropy is that it
adds up to produce also macroscopically directional properties when the orienta-
tion distribution (crystallographic texture) of the grains in a polycrystal is not ran-
dom. Figure 1.3a,b shows such an example of a plain carbon steel sheet with a pre-
ferred crystal orientation (here high probability for a crystallographic {111} plane
being parallel to the sheet surface) after cup drawing. Plastic anisotropy leads to
the formation of an uneven rim (referred to as ears or earing) and a heterogeneous

Figure 1.1 Elastic anisotropy in a polycrystal resulting from superposition of single-crystal
anisotropy.
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Figure 1.3 Consequence of plastic anisotropy  crystallographic [111] axis parallel to the sheet

when drawing a textured sheet into a cup. The  normal. The arrows in (a) mark six ears result-

orientation distribution before deformation ex-  ing from preferential material flow. (b) The

hibits a high volume fraction of grains with a corresponding crystal plasticity finite element
simulation.

distribution of material thinning during forming. It must be emphasized in that
context that a random texture is not the rule but a rare exception in real materials.
In other words, practically all crystalline materials reveal macroscopic anisotropy.
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A typical example of such macroscopic anisotropy is the uniaxial stress—strain
curve, which is the most important mechanical measure in the design of structural
materials. The introductory statement made above implies that uniaxial stress—
strain curves represent an incomplete description of plastic deformation as they
reduce a six-dimensional yield surface and its change upon loading to a one-dimen-
sional (scalar) yield curve, see Figure 1.4. Another consequence of this statement is
that the crystallographic texture (orientation distribution) and its evolution during
forming processes is a quantity that is inherently connected with plasticity theo-
ry, more precisely, with the anisotropy of the underlying plasticity mechanisms.
Texture can, hence, be used to describe the integral anisotropy of polycrystals in
terms of the individual tensorial behavior of each grain and the orientation-depen-
dent boundary conditions among the crystals. Formally, the connection between
shear and texture evolution becomes clear from the fact that any deformation gra-
dient can be expressed as the combination of its skew-symmetric portion, which
represents a pure rotation leading to texture changes if not matched by the rota-
tion implied by plastic shear, and a symmetric tensor that is a measure of pure
stretching. Plastic shear, hence, creates both shape and orientation changes, except
for certain highly symmetric shears. Therefore, a theory of the mechanical prop-
erties of crystals must include, first, the crystallographic and anisotropic nature
of those mechanisms that create shear and, second, the orientation(s) of the crys-

flow stress
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Figure 1.4 Flow stress and strain hardening of anisotropic materials are tensor quantities.
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tal(s) studied relative to the boundary conditions applied (e.g., loading axis, rolling
plane).

Early approaches to describe anisotropic plasticity under simple boundary con-
ditions considered these aspects, such as the Sachs (1928), Taylor (1938), Bishop-
Hill, and Kréner (1961) formulations. However, these approaches were neither de-
signed for considering explicitly the mechanical interactions among the crystals in
a polycrystal nor for responding to complex internal or external boundary condi-
tions, see Figure 1.5a—d. Instead, they are built on certain simplifying assumptions
of strain or stress homogeneity to cope with the intricate interactions within a poly-
crystal.

For that reason variational methods in the form of finite element approximations
have gained enormous momentum in the field of crystal mechanical modeling.
These methods, which are referred to as crystal plasticity finite element (CPFE)
models, are based on the variational solution of the equilibrium of the forces and
the compatibility of the displacements using a weak form of the principle of virtual
work in a given finite-volume element. The entire sample volume under consider-
ation is discretized into such elements. The essential step which renders the defor-
mation kinematics of this approach a crystal plasticity formulation is the fact that
the velocity gradient is written in dyadic form. This reflects the tensorial crystal-
lographic nature of the underlying defects that lead to shear and, consequently, to
both shape changes (symmetric part) and lattice rotations (skew-symmetric part),
see Chapter 3. This means that the CPFE method has evolved as an attempt to
employ some of the extensive knowledge gained from experimental and theoret-
ical studies of single-crystal deformation and dislocations to inform the further
development of continuum field theories of deformation. The general framework
supplied by variational crystal plasticity formulations provides an attractive vehi-
cle for developing a comprehensive theory of plasticity that incorporates existing
knowledge of the physics of deformation processes (Arsenlis et al., 2004; Curtin
and Miller, 2003; Vitek, Mrovec, and Bassani, 2004a) into the computational tools
of continuum mechanics (Zienkiewicz, 1967; Zienkiewicz and Taylor, 2005) with
the aim to develop advanced and physically based design methods for engineering
applications (Zhao et al., 2004a).

One main advantage of CPFE models lies in their capability to solve crystal
mechanical problems under complicated internal and/or external boundary con-
ditions. This aspect is not a mere computational advantage, but it is an inher-
ent part of the physics of crystal mechanics since it enables one to tackle those
boundary conditions that are imposed by inter- and intragrain micro-mechanical
interactions, Figure 1.6 (Sachtleber, Zhao, and Raabe, 2002). This is not only es-
sential to study in-grain or grain cluster mechanical problems but also to better
understand the often quite abrupt mechanical transitions at interfaces (Raabe et
al., 2003).

However, the success of CPFE methods is not only built on their efficiency in
dealing with complicated boundary conditions. They also offer high flexibility with
respect to including various constitutive formulations for plastic low and hard-
ening at the elementary shear system level. The constitutive flow laws that were
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Figure 1.5 The increasing complexity of crys-
tal-scale micromechanics with respect to the
equilibrium of the forces and the compatibility
of the displacements for different situations:
(a, b) Single-slip situation in a single crystal
presented in stress space. (c) Portion of a
single-crystal yield surface with three slip sys-
tems. (d) Multislip situation in a polycrystal

where all different crystals have to satisfy an
assumed imposed strain in their respective
yield corners. If the strain is homogeneous,
this situation leads to different stresses in
each crystal (Raabe et al., 2002a, 2004a). Tcrit:
critical shear stress; o' BH: Taylor-Bishop—Hill
stress state (stress required to reach a yield
corner).

suggested during the last few decades have gradually developed from empirical
viscoplastic formulations (Asaro and Rice, 1977; Rice, 1971) into microstructure-
based multiscale models of plasticity including a variety of size-dependent effects
and interface mechanisms (Arsenlis and Parks, 1999, 2002; Arsenlis et al., 2004;
Cheong and Busso, 2004; Evers, Brekelmans, and Geers, 2004a,b; Evers et al., 2002;
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17.10

5 mm

15% thickness reduction

in a lubricated channel-die setup. White lines
indicate high-angle grain boundaries derived
from electron backscatter diffraction micro-
texture measurements. The equivalent strains
(determined using digital image correlation)

Figure 1.6 Experimental example of the
heterogeneity of plastic deformation at

the grain and subgrain scale using an alu-
minum oligocrystal with large columnar
grains (Sachtleber, Zhao, and Raabe, 2002).

The images show the distribution of the ac-
cumulated von Mises equivalent strain in a
specimen after Ay/yo = 8 and 15% thickness
reduction in plane strain (yg is the initial sam-

differ across some of the grain boundaries by
a factor of 4-5, giving evidence of the enor-
mous orientation-dependent heterogeneity of
plasticity even in pure metals.

ple height). The experiment was conducted

Ma and Roters, 2004; Ma, Roters, and Raabe, 2006a,b). In this context it should be
emphasized that the finite element method itself is not the actual model but the
variational solver for the underlying constitutive equations. Since its first introduc-
tion by Peirce et al. (1982), the CPFE method has matured into a whole family of
constitutive and numerical formulations which have been applied to a broad variety
of crystal mechanical problems. See Table 1.1 for examples and Roters et al. (2010)
for a recent review.

In this book we give an overview of this exiting simulation method. In Part One
we introduce the fundamentals of the approach by briefly reiterating the basics of
the underlying metallurgical mechanisms, of continuum mechanics, and of the
finite element method.

Subsequently, in Part Two, we discuss the details of classical and more advanced
dislocation-based constitutive models which are currently used in this field. In this



