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CALCULUS AND ANALYTIC GEOMETRY



TO MY PARENTS



PREFACE TO THE SECOND EDITION

This edition was written with the same objectives and in the same spirit as
the first edition. The organization of the course has been changed only to add a
chapter on ordinary differential equations at the end. That chapter discusses topics
usually studied in a first course and attempts to make the student aware of ques-
tions of existence and uniqueness.

The illustrative examples and the exercises of the first edition seem to have
been quite successful, and they have been changed in relatively few places, usually
for the purpose of adding some easier exercises. Many three-dimensional figures
have been improved in detail, but they are still as simple as possible so that the
student can hope to copy from them and thus to improve his own sketches. There
have been hundreds of minor changes in exposition in places where experience has
shown that particular passages were not quite as clear to the student as had been
expected. It is believed that the definition of function in Chapter 1 has been made
more rigorous, with subsequent improvements throughout the book, and that the
first treatment of integration in Chapter 2 has also been improved.

More instructors and students than I can mention have made encouraging,
useful, and significant comments, and I am grateful to all of them. I would es-
pecially like to acknowledge here the help I received from Joseph d’ Atri, Sidney
Neuman, and Bennington Gill, and the comments of J. L. Baker, H. J. Cohen,
Gerald Freilich, Edwin Goldfarb, Alvin Hausner, Solomon Hurwitz, Frank
Kocher, Henry Malin, T. O. Moore, John Shaw, Fritz Steinhardt, and Fred
Supnick.

Englewood, New Jersey
February 1967



PREFACE TO THE FIRST EDITION

Three principles guided the writing of this book. First, the student must be
able to read his textbook and learn from it. The exposition therefore is detailed
and carefully motivated, and there are many illustrative examples. Second, the
student should be led to reason carefully and to write precisely. Definitions and
theorems are carefully stated, and the theorems are proved with as much rigor as
was deemed feasible for a first-year college course. Where no proof is given this
is indicated and, if possible, the difficulty pointed out. Third, not only are the
ideas of the course important, but also the ability to apply them to specific situa-
tions. The author tried to maintain a reasonable balance between theory on the
one hand and technique, drill, and application on the other.

The book assumes training on the secondary school level in trigonometry
and advanced algebra; there are, however, articles on inequalities and absolute
values in the appendix and review articles on the trigonometric functions and
the logarithmic function in the text itself.

The book starts with chapters on the differential and integral calculus which
rest on an intuitive basis rather than an abstract basis. These chapters are also
intended to give the student enough technique and experience with applications
to start him in a good physics course. Next, a long chapter on plane analytic
geometry introduces vector analysis early and uses the calculus tool previously
prepared in a significant role. There follow chapters on the trigonometric, loga-
rithmic, and exponential functions, and a chapter on formal integration.

By this time the student has perhaps gained a certain mathematical matu-
rity and it is wise to examine more closely the underlying assumptions made
earlier in the book. No two instructors will place the same relative emphasis on
the various ideas of Chapter 7; indeed, only Part 1 of Section 7.5 is indispensable
for the reading of the later chapters. Even though most students will find this
more abstract theory difficult, the author firmly believes that it should be at-
tempted.

Chapter 8 returns to more applications of the calculus tool, and polar coor-
dinates are studied in Chapter 9. Chapter 10 is devoted to solid analytic geometry,
the vector analysis again playing a prominent role. Here, for the first time in this
text, the student has to deal with three-dimensional configurations, and an attempt
is made to help him with his sketches before he is called upon to use them in various
theories and applications.
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viii  Preface to the First Edition

There then follow chapters on the calculus of functions of two or more vari-
ables and on applications which use three-dimensional geometry. The last chapter
is devoted to infinite series.

The ideas and techniques considered are not of equal difficulty and signifi-
cance and the sections are not all of equal length. It is not intended that a class
consider every part of every section at a uniform rate of one section per lesson.
Different instructors will wish to emphasize different points and many of the
longer sections are subdivided to allow the instructor more flexibility in making
his assignments.

A special effort has been made to supply original exercises and many more
are included than any one class can use. These have been carefully graded so that
the instructor can select assignments according to the emphasis he wishes to place
on the ideas covered. More difficult exercises are included in most sections to
motivate the better student and to teach him something significant and new. The
answers for many exercises are given in the exercises themselves. For those more
formal exercises, which are subdivided into many parts, answers are usually given
in the answer section at the back of the book for the alternate parts — (a), (c),
(e), etc. The other answers given in the back of the book are for the odd-numbered
exercises.

It is difficult to trace the development of one’s own ideas about a course of
study, but I am keenly aware of how much I have been influenced by my col-
leagues and students, both at the Pennsylvania State University and at the City
College of New York.

It is a pleasure to thank Professors Burton W. Jones, Melvin Henriksen, and
Andrew J. Terzuoli, who read the manuscript and made valuable suggestions,
and Mrs. Olga Skelley, who typed the manuscript.

Englewood, New Jersey
March 1960
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The Derivative

1.1 The Definition of a Function

Science studies correspondences between sets of numbers. Thus there may be a
relationship between the viscosity 7 of a certain oil and the temperature 7'; perhaps
with each 7 number selected from a certain suitable temperature interval we can
associate a corresponding viscosity number #. The number N of bacteria in a
culture changes as the time ¢ changes; perhaps one can explain how to compute an
N number for each ¢ number selected from a certain suitable time interval. The
current ¢ flowing in a circuit might depend on the resistance R of the circuit. The
volume V of a sphere is related to its radius .

In describing such correspondences the mathematician uses the word
“function.”

i@ DEFINITION 1

Function; domain; range. We are given a set of numbers, which we shall call the
domain D, and instructions for associating a number y with each number x of D.
The set of all numbers y associated with numbers x of D shall be called the range R.
The correspondence thus created between the sets D and R shall be called a
function.

Example 1.  The formula for the volume of a sphere, V = 44 773, associates
one number ¥ with each number r > 0.* For instance, corresponding to r = 3 we
have V = 44 = 32 = 36«. The domain D for this function is the set D : r > 0; the
instructions for associating a ¥ number with each r number of D are furnished by
the formula; the range is the set R : V' > 0, because any V number of this range can
be achieved by choosing a suitable r number of D.

* To review inequalities, see Appendix 1.



2 The Derwative

Example 2. Consider the algebraic instructions furnished by y
= 4/25 — x2.* Here one real number y is associated with each number x of the
interval —5 < x < 5. For instance, with x = 4 we associate y = 3. The domain D
for this function is the interval —5 < x < 5, the instructions for associating a y
number with each x number of D are furnished by the formula, and the range R is
theset 0 < y < 5.

Example 3.  Consider y = /x*for all real x. The instructions for finding the
number y associated with a particular x call for squaring the x number and
then taking the positive square root. For instance, when x = —2 we compute
y= (—2)2= A/4 = 2. These instructions could also have been written

. xifx >0
= —x if x <0,
or as y = |x|. The domain D for this function is the set of all real numbers; the

range R is the set of all nonnegative numbers.
Example 4. Consider

35for 0<d<Y
40 for 5 < d < %
C=1{45for % <d < %
50 for 3 < d < %
55 for 4% < d < 1.

This set of instructions associates a specific number C with each number d of the set

0 < d < 1. Thus, for d = .24 we are instructed to take C = 40 and for d = .60 we

are instructed to take C = 50. The domain D for this function is the set0 < d < 1;

the range R is the set of five numbers {35, 40, 45, 50, 55}. The number C might

represent the cost of a taxi ride in cents and d the distance traveled in miles.
Example 5. Consider

1
y= {1+ 2
0 for x = 0.

forx # 0

Here the domain D is the set of all real numbers and we have instructions for as-
sociating a number » with any real x. For x = 14, for instance, the first line of the
instructions tells us to take

1
IETF B

>

O =

* Recall that the radical notation conventions require that the positive square root be taken
here. If both positive and negative square roots are intended, as in the familiar quadratic formula,
then both signs must be written. The roots of ax? + bx +¢ = 0 are x = (—b = \b? — 4ac)/2a.

t The absolute value symbol, | |, is considered in Appendix 2.



