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I FOREWORD

This book would not have been possible without the efforts of scientists in the field
who have labored to advance the field of structural mass spectrometry over the last
several years. These efforts, and the germ of an idea that a book such as this was
timely and possible, came together in January 2006 in the form of a mass
spectrometry meeting, the 18th Sanibel Conference on Mass Spectrometry, titled
“Focus on Biomolecular Structure, Dynamics and Function: Hydrogen Exchange
and Covalent Labeling Techniques™, organized by Igor Kaltashov and John Engen.
At this three-day meeting, experts in mass spectrometry, many of which are authors
of chapters in this book, exchanged the latest ideas related to understanding protein
structure and dynamics, and found that mass spectrometry based approaches were
converging on a common goal: to fill gaps in our understanding of protein structure
and conformational dynamics, built on a firm foundation of high resolution structure
data.

This group has since that time strengthened their interactions, forming a
Hydrogen Exchange and Covalent Labeling interest group within the American
Society for Mass Spectrometry: this group has grown in two short years to over 750
members. This book provides a milestone in the efforts of this group to present the
state-of-the art in their field and disseminate that art as widely as possible. The future
of this field looks very bright indeed.

On a personal note, I wish to thank all of my co-authors, I earnestly hope they find
their efforts to be rewarded in this volume. I also wish to acknowledge the
outstanding editing assistance from Shannon Swiatkowski and the support of all the
faculty and staft of the Case Center for Proteomics, whose single minded pursuit of
excellence makes being Center director a very rewarding occupation.

Mark Chance

Cleveland, Ohio
May 2008
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I CHAPTER 1

Overview of Mass Spectrometry
Technologies for Examining
Protein Structure: Current

and Future Directions

SHANNON M. SWIATKOWSKI and MARK R. CHANCE

Center for Proteomics, Case Western Reserve University, Cleveland, OH. USA

1.1 INTRODUCTION

Understanding the molecular structure and dynamics of macromolecules at high
resolution and with high throughput is a topic of great importance in biology. Nuclear
magnetic resonance (NMR) and crystallographic approaches are the foundation of
rapid progress in this area. Access to genome sequences and cloning resources from
an ever-increasing number of organisms and allied high-throughput structure and
modeling studies are likely to enable resolution of the structure of most protein
domains in the near future (Chance et al., 2004). However, the machinery of
eukaryotic cell biology involves multidomain proteins that interact in large
complexes as molecular machines (Sali et al., 2003; Russell et al., 2004).
Understanding how these domains interact is crucial in understanding their function.
As this “database” of structural information evolves and develops, examination of the
structure—function relationships of a wide range of proteins becomes possible. In
addition, many biological questions of interest invoke questions of protein dynamics,
ligand binding, complex formation, or the structural effects of posttranslational
modifications. Many of these experiments are beyond the range of classical structural
biology approaches (see below) and structural mass spectrometry (MS) methods have
been very successful in filling this technological gap. The fundamental contributions
of mass spectrometry to structural biology studies have grown dramatically due to
increases in instrument sensitivity and resolution that have accrued over the past
10 years. This has advanced our ability to reliably sequence and identify protein

Mass Spectrometry Analysis for Protein—Protein Interactions and Dynamics, Edited by Mark Chance
Copyright © 2008 John Wiley & Sons, Inc.



2 OVERVIEW OF MASS SPECTROMETRY TECHNOLOGIES

fragments and their modified products, a feature on which structural mass
spectrometry fundamentally relies. This book catalogs the state of the art in these
approaches and provides a perspective on the future prospects for the field. The three
main technologies of structural mass spectrometry that have rapidly evolved and
grown, include covalent labeling strategies, hydrogen—deuterium (H/D) exchange,
and chemical cross-linking.

Although the technologies have a great many differences in their sample
preparation, instrumentation requirements, and other details of the approaches, their
similarities must not be overlooked. First, they all rely on detailed identification and
sequencing of peptide fragments generated by specific or nonspecific cleavage of
intact and (generally) purified protein species (or complexes). Second, they infer
structural information based on a mass shift of these peptide species after exposure to
the labeling reagents of choice. The target atoms that are labeled must be solvent
accessible, at least transiently. Third, the value of the structural information is greatly
enhanced by having a structural model of the protein or proteins. It is, in fact, very
clear that the advancement of these approaches will be significantly accelerated by a
union of these experimental technologies with computational modeling approaches
in the context of the rapidly expanding structure databases (Chance et al., 1997; Guan
et al., 2004; Kamal and Chance, 2008; Takamoto and Chance, 2006).

Structural models for most protein domains, providing a foundation for structural
mass spectrometry, are accumulating rapidly (Eswar et al., 2007). Advances in
protein structure determination and computational modeling mediated by structural
genomic initiatives throughout the world promise to correlate sequence and structure
for most protein domains within the next 5 years (Burley et al., 1999; Chance et al.,
2002, 2004). Coincident with progress toward this milestone is the realization of the
importance of macromolecular interactions and even the fundamental significance of
large macromolecular complexes mediating most normal and aberrant biological
functions (Gavin, 2005). Solving the structure and connecting it to function for these
large complexes are two of the most important challenges in structural biology today.
Unlike solving the structure of protein domains or short nucleic acids that contain
tertiary structure, this effort is far from high throughput and likely involves a
combination of computational and experimental approaches, tailored specifically to
the problem at hand.

The barriers to determining the structure and dynamics of proteins and their
complexes include known limitations in crystallography and NMR technologies.
Issues such as complex size, crystallizability, solubility, and amounts of materials are
well known. In recent years, electron microscopy (EM) and tomography techniques,
particularly at low temperatures, have substantially improved and are making
important contributions to determining the structure of complexes (Sali et al., 2003).
These approaches have resolution limitations for many samples and are better for
larger complexes or cells due to sample dose tissues. This leaves a gap in
technological progress for the “medium” size complexes, particularly medium-sized
binary complexes (50-200kDa). This has spurred the development of a host of
computational methods that can fill in the gap and contribute to understanding the
relationship between protein structure and function.



