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Preface

Computers began to think, in their simple way, in the 1960s; they ceased to
be mere adding machines. People interested in using computers to help with
chemical synthesis design were among the earliest researchers in the field of
artificial intelligence, and the results of their work have had a major impact
on chemical software development ever since. I had the good fortune to
become involved just at the time when the scientific community began to
take chemical information and knowledge systems seriously — in the 1980s,
twenty years after the pioneers had taken the lead. I have watched some of
the systems grow from research ideas into mature products and in this book
I write about them. The book is biased because I have written about what I
know. However, I have been involved in some key areas. Knowledge-based
and reasoning-based approaches are in routine use to predict or plan chemi-
cal reactions, to predict toxicity, and to predict metabolism and biodegrada-
tion, and spin-off from research into them has produced the best-known
chemical structure and reaction database systems. There has not been a book
specifically about them until now and I think it is time to fill the gap.

I came into this field almost by chance and, while chemistry has remained a
central theme, it has taken me into biology, aspects of mathematics and theories
of logic, and even psychology and law. I have crossed the boundaries between
industry and academia and collaborated with scientists on every continent, and
what I write is about the results of that collective effort. As everyone writes in
the preface to a book, because it is true, it would be impractical to list the names
of everyone to whom I owe gratitude. However, I do want to thank David A.
Evans, A. Peter Johnson and Alan K. Long for inspiring my interest in
knowledge-based systems in chemistry and their patient support while I
developed an understanding of the science. I thank Alan K. Long, Anthony
Long and Martin Ott for their comments and advice on some of the sections in
this book.
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CHAPTER 1

Artificial Intelligence — Making
Use of Reasoning

Launched by half a dozen young men at a run, a three-metre long paper dart
can fly successfully, dare we even say “‘gracefully”, the length of a research
station canteen before making an unfortunate landing in the director of
research’s Christmas lunch. It is just a question of getting the aerodynamics
right. My school mathematics teacher reminded us on most days (several
times on some) that all science is mathematics. But was it only the power of
numbers he had in mind? Does science come down to a sweatshop full of
equations mindlessly crunching numbers, real and imaginary?

Contrary to the perceptions of many people outside science, as well as too
many inside it, science is not about proving facts: it is about testing hypotheses
and theories; ultimately, it is about people and their opinions. Simple, rigid
application of rules of aerodynamics may get you a paper dart that flies but in
many fields human decision making is best supported by reasoned argument or
the use of analogy and not much helped by numerical answers. The minimum
braking distance for a car travelling at forty miles per hour is twenty-four
metres, according to the Driving Manual from the Driving Standards Agency.'
Assuming you can countenance the required mixing of miles and metres, does
this information help you to drive more safely? Have you any more idea than I
have how far ahead an imaginary twenty-four metre boundary-marker pre-
cedes you along the road?

And there is a further problem. ““Numbers out” implies “‘numbers in”, so
what do you do if you have no numbers to put in? A regrettably popular
solution is to invent them — or at least to come up with dubious estimates to
feed into a model that demands them, which is close to invention. It is the only
option if you want to apply numerical methods and to give numbers to the
people asking for solutions. That numbers make people feel comfortable is a
bigger problem than it may at first appear to be, too. Uncritical recipients of
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2 Chapter 1

numerical answers tend to believe them, and to act on them, without probing
very deeply. More sceptical recipients want to judge for themselves how
meaningful the answers are but often find that the kind of supporting evidence
associated with a numerical method is not much help. Many are the con-
troversies over whether this or that numerical method is more precise but they
are missing the point if the data are far less precise than the method. Perhaps
numbers are unnecessary — even unsuitable — for expressing some kinds of
scientific knowledge.

There are circumstances in which numerical methods are highly reliable.
Aecroplanes stay up in the sky and make it safely to earth where they are
supposed to do. Chemical plants run twenty-four hours a day, year in year out.
Numerical methods work routinely in physical chemistry laboratories, and
toxicology and pharmacology departments. But it is unlikely that the designers
of the three-metre paper dart that took flight at the start of this chapter did any
calculations at all. My guess is that they just went with a gut feeling based on
years of experience making little ones.

This book is about uses of artificial intelligence (AI) and databases in com-
putational chemistry and related science where qualitative output may be of
more practical use than quantitative output. It touches on quantitative struc-
ture—activity relationships (QSAR) and how they can inform qualitative pre-
dictions, but it is not about QSAR. Neither is it a book about molecular
modelling. Both subjects are well-covered in too many books to list compre-
hensively. A few examples are given in the references at the end of this chap-
ter.> © This book focuses on less widely described and yet, probably, more
widely-used applications of Al in chemistry. -

The term ““artificial intelligence™ carries with it notions of thinking computers
but, as a radio personality in former times would have had it,” it all depends on
what you mean by intelligence. If you type “Liebig Consender™ into the Goo-
gle™ search box, Google™ responds with “*Did you mean Liebig Condenser”
and provides a list of corresponding links without waiting for an answer. Thatis
worryingly like intelligent behaviour whether it is intelligent behaviour or not.
Arguments continue about whether tests for artificial intelligence such as the
Turing test® are valid and whether a categorical test or set of tests can be devised.
Perhaps it is sufficient to require that to be intelligent a system must be able to
learn, be able to reason, be creative, and be able to explain itself persuasively.
Currently, no artificial intelligence system can claim to have all of these char-
acteristics. Individual systems typically have two or three.

To count as intelligent, solving problems needs to involve a degree of novel
thinking, i.e. creativity. Restating the known, specific answer to a question
requires only memory. Compare the following questions and answers. The first
answer merely reproduces a single fact. Generating the second answer, simple
though it is, requires reasoning and a degree of creativity.

“Where’s the sugar?”
“In the sugar bowl”.
“Where will the sugar be in this supermarket?”
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“A lot of supermarkets put it near the tea and coffee, so it could be along the
aisle labelled ‘tea and coffee’. Alternatively, it might be in the aisle labelled
‘baking’. Let’s try ‘baking’ first — it is nearer’ .

One of the first computer systems to behave like an expert using a logical
sequence of questions and answers to solve a problem was MYCIN,” a system
to support medical diagnosis.

“Doctor, I keep getting these terrible headaches”.

“Sorry to hear that. Is there any pattern to when the headaches occur?”
“Now you ask, they do seem to come mostly on Sunday mornings™.
“And what do you do on Saturday evenings?”

The doctor’s questions are not arbitrary. You can see how they are directed
by the patient’s responses. You can probably see where they are leading, too,
but the doctor would still want to ask further questions to rule out all the
possibilities before jumping to the obvious conclusion about the patient’s
Saturday nights out on the town. The aim of the MYCIN experiment was to
design a computer system capable of choosing appropriate sequences of
questions similarly, in order to reach a diagnosis efficiently.

This kind of reasoning is common throughout science although it often does
not involve a dialogue; the questions may be implicit in a process of thought
rather than consciously asked. Suppose you know that:

many o,B-unsaturated aldehydes cause skin sensitisation;

for activity to be expressed a compound must penetrate the skin;
compounds with low fat/water partition coefficients do not penetrate the
skin easily:

many imines can be hydrolysed easily in living systems to generate
aldehydes.

Actually, the story for skin sensitisers is better understood and can be more
fully and more usefully described than this, but what we have will do for the
purposes of illustration. Suppose you are shown the structure of a novel o,f-
unsaturated imine and asked for an assessment of its potential to cause skin
sensitisation. You will be aware that the imine might be converted into a
potentially skin-sensitising aldehyde. If you have access to suitable methods
you will get an estimate of the fat/water partition coefficient for the imine in
order to make a judgement about whether it will penetrate the skin (most likely
you will use a calculated logP value as a measure of fat/water partition coef-
ficient, but there is more about that later in this book). You will presumably
have the gumption to consider the partition coefficient for the aldehyde as well,
in case the imine is unstable enough to hydrolyse on the surface of the skin.

Depending on the information, you will come up with conclusions and
explanations such as:

“the query substance is likely to be a skin sensitiser because it has the right
partition coefficient to penetrate the skin and the potential to be converted
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into an o,B-unsaturated aldehyde — a class of compounds including many
skin sensitisers’’;

“the query is not likely to be a skin sensitiser because although it is an imine
which could be converted into an o,B-unsaturated aldehyde — a class of
compounds including many skin sensitisers — both compounds have such
low fat/water partition coefficients that they are unlikely to penetrate the
skin™;

“the situation is equivocal because the imine has too high a fat/water par-
tition coefficient to penetrate the skin easily but the related aldehyde has a
lower fat/water partition coefficient and I do not know how readily the imine
will hydrolyse to the aldehyde on the skin surface.”

Systems in which a reasoning engine solves problems by applying rules from
a knowledge base compiled by human experts were originally called “expert
systems’’, on the grounds that they behave like experts. In this book they are
distinguished by being called “knowledge-based systems”. They use reasoning
to varying degrees and they are creative in the sense that they solve novel
problems and make predictions. The particular strength of the best of them is
their ability to explain themselves. For example, there is fairly good under-
standing of why a,B-unsaturated aldehydes are skin sensitisers. The human
compilers of a knowledge base can include that information so that the expert
system can present it to a user when it makes a prediction and can explain how
it reached its conclusion.

Given access to structures and biological data for lots of compounds, you
might discover the rule that o,B-unsaturated aldehydes are often skin sensi-
tisers, assuming you were not overwhelmed by the quantity of data. Knowl-
edge-based systems as defined here make no attempt to discover rules from
patterns in data — they simply apply the rules put into them by human experts.
In terms of the criteria for intelligence, they are unable to learn for themselves.
The more general term, ‘“‘expert system’, was later extended to include systems
that generate their own models by statistical methods and apply them. While
these systems are perhaps nearer to all-rounders in the stakes for showing
intelligence than knowledge-based systems, they fall down on explaining
themselves. They cannot go beyond presenting the statistical evidence for their
rules.

A speaker remarked at a meeting I attended that ““An expert system is one
that gives the answers an expert would give . .. including the wrong ones™. It
might be fairer to compare consulting a knowledge-based system (which is what
he was talking about at the time) with consulting a group of human experts
rather than one, since knowledge bases are normally compiled from collective
knowledge, not just individual knowledge, but his warning stands. Other
people have, only half-jokingly, suggested that an expert system is one suitable
only for use by an expert. That may be over-cautious but users of expert sys-
tems should at least be thinking and well-informed: it is what you would expect
of someone taking advice from a team of experts.
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CHAPTER 2

Synthesis Planning by Computer

Organic synthesis chemists are used to working with ideas and rules of
thumb. They are not inclined to plan reaction sequences to novel compounds
on the basis of kinetic or thermodynamic calculations — indeed, they are
rarely in the position to do so because data of sufficient reliability are not
available for the calculations — but they have a reasonable success rate. How
do they do it? Could a computer emulate the thinking of a chemist who
works out a practical synthetic route to a complicated organic compound?

The tale is told of a conversation over a few beers one evening between three
eminent chemists famed for their work in organic synthesis — Elias J. Corey,
Alexander R. Todd and Robert B. Woodward. Corey, it is said, expressed the
view that computers would eventually be capable of matching or even out-
classing human reasoning; soon there would be machines capable of designing
chemical syntheses just as well as chemists do. Todd and Woodward were
sceptical, it is said, arguing that chemical synthesis was an art more than
a science, calling for imagination and creativity well beyond the capacity of a
computer. Corey saw how a computer might reason like a chemist and he
proposed to set up a project to demonstrate the feasibility of his ideas. The
story may be apocryphal but it does not matter if it is. The exciting thing is that
Corey recognised a new challenge well beyond the everyday goals of most
researchers and took it on. He was not alone in seeing and taking up the
challenge — there were others who will feature in this chapter and the next — but
his project proliferated like the mustard tree in the parable so that by now every
chemist is familiar with at least one spin-off computer application that roosts in
its branches.

Corey’s project to develop a synthesis-planning program, OCSS (“*Organic
Chemical Simulation of Synthesis™), started in the 1960s and was described in a
paper in Science in 1969.' By 1971, when a paper was submitted to the Journal
of the American Chemical Society,” the program had been re-implemented as
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Synthesis Planning by Computer 7

LHASA (Logic and Heuristics Applied to Synthetic Analysis) and the project
was expanding.

Right from the start the plan was to develop a computer system that did not
just think like a chemist, but communicated like one, too. Computer graphics
was in its infancy. The computer mouse was yet to come to public notice —
Douglas Engelbart filed his application for a patent in 1967° — but there were
systems that linked a graphics tablet, or ““bit pad”, to a vector graphics screen
(a line is displayed on a vector graphics screen by scanning the electron beam
between the coordinates of the ends of the line, whereas in a television or a
modern personal computer system the screen is scanned systematically from
side to side and top to bottom and the beam is activated at the right moments to
illuminate the pixels on the screen that lie on the line). Other researchers
interested in using computers for chemistry were developing representations of
chemical structures to suit computers, but in this project the computer would be
expected to use the representations favoured by organic chemists — structural
diagrams. In their paper in 1969," Corey and Wipke wrote, “The following
general requirements for the computer system were envisaged at the outset: (i)
that it be an ‘interactive system’ allowing facile graphical communication of
both input and output in a form most convenient and natural for the
chemist . . . .

A structural diagram is full of implicit information for a chemist that would
not be perceived by someone not trained in chemistry. It is not a picture of a
molecule, in as much as there can be a picture of one; it tells you what is
connected to what, and how, but it does not tell you the three dimensional
locations of atoms: like the map of the London Underground it is a graph. To
make useful inferences, the computer needs to be able to “see” the graph like a
chemist sees it, and so a chemical perception module in LHASA fills checklists
for the atoms and bonds in a molecule for use in subsequent processing.
For example, if a carbon atom is found to be bonded through a double
bond to one oxygen atom and through a single bond to another oxygen atom
which itself bears a hydrogen atom, the carbon atom can be flagged as the
centre of a carboxylic acid group; if an atom is at a fusion point between two
rings (which would have implications for its reactivity) it can be flagged as a
“fusion atom™.

Computer perception of a molecule may put the computer in the position to
think about it the way a chemist would, but how does a chemist think of ways
to synthesise even a simple molecule? The question embodies a host of others
each of which probably has more than one answer. Corey would have been
well-placed to look for answers suited to computer-implementation, having
formulated his ideas for the retrosynthetic approach to chemical synthesis
design for which he was later to receive a Nobel Prize in Chemistry,*>*" and
his thinking on the subject and his work on a computer system must surely have
fed each other.

The essence of the retrosynthetic approach is that the target molecule con-
tains the clues to the ways in which it might be constructed. That might be
obvious but stating something explicitly and letting it lead your thinking can



