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PREFACE

In the twelve years since the third edition of this book was published, the computing
power at the fingertips of econometricians has dramatically increased. Econometric
theorists have also been substantially increasing the number of suggested estima-
tion, testing, and diagnostic procedures, most of which were quickly made available
in econometric software packages. Faced with this cornucopia, the applied econome-
trician, whose task is the analysis of real-life data, often suffers from “intellectual
indigestion” and finds it difficult to make informed and sensible judgments about
which procedures to implement.

In writing this new edition we have had two major objectives. The first is to
provide a comprehensive and accessible account of available econometric methods.
The second is to illustrate these methods with applications to some real data sets,
which are given on the data diskette that accompanies the book; thus, the reader
can replicate the applications in the text, experiment with some of the problems
suggested at the chapter ends, and carry out further analyses of her own choosing.
These objectives have dictated an almost total rewriting of the book and the addition
of substantial treatments of new topics that have not appeared in previous editions.

As with earlier editions, it is assumed that the reader has an understanding of
the basic concepts of statistical inference. However, Appendix B, on statistics, gives
a review of the major topics, and the detailed treatment of inference procedures in
the earlier chapters should help with statistical recall. Again, matrix algebra is used
extensively in the text. Appendix A, on matrix algebra, provides a comprehensive
treatment, where the development matches as far as possible the order in which the
various matrix concepts are used in the main text, Thus, a reader new to matrix
algebra can switch between the text and Appendix A as the topics require.

Recent econometric developments surveyed in this edition may be grouped into
siX major areas:

* Asymptotics
* Time series
* Model evaluation

Xv
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® Generalized method of moments
¢ Computationally intensive methods
® Microeconometrics

Asymptotics

Realistic model specifications often do not permit the development of exact,
finite-sample results. It is, however, frequently possible to derive results that hold
asymptotically. The maximum likelihood principle is used extensively in recent
work, and the classical likelihood ratio, Wald, and Lagrange multiplier tests are fre-
quently applied. An introduction to asymptotic results and to the maximum likeli-
hood principle is given in Chapter 2 in the context of the two-variable model, where
the regressor is the lagged value of the dependent variable. The student is thus intro-
duced to these basic concepts at an early stage. Chapter 5 gives an extended treatment
of maximum likelihood and the trinity of classical tests. Chapter 6, on heteroscedas-
ticity and autocorrelation, describes many applications of these tests.

Time Series

Analysis of univariate time series continues to be an important topic, but the
major new development in this field is the investigation of nonstationary series and
the impact of nonstationarity on estimation procedures. Thus, one needs to test for
stationarity, and a large literature has developed around unit root tests. When a re-
gression is run containing two or more nonstationary series, there is the possibility
that some linear combination of these series has stationary residuals, in which case
the series are said to be cointegrated. Tests for the possible existence of cointegra-
tion are thus important, and estimation procedures for a given data set depend on the
number of cointegrating relations found. The contrast between stationary and non-
stationary series is introduced in Chapter 2 in the context of the two-variable model,
where the regressor is the lagged value of the dependent variable. This is developed
fully in Chapter 7, which is devoted to the analysis of univariate time series. This
chapter closes with an empirical application to monthly data on U.S. housing starts,
Chapter 8 contains an extensive discussion of cointegration tests and estimation pro-
cedures. These are illustrated in an empirical study of gasoline demand.

Model Evaluation

There has been intense debate on model evaluation and diagnostic procedures.
The debate continues and there is, as yet, little consensus. However, it does seem
that more applied researchers are conducting various evaluation tests. A basic prin-
ciple of this approach is to divide sample data into two subsets: one to be used for
estimating some specified model and the other to be used for evaluating the results
of the estimation. Chapter 4 illustrates the application of many of these tests to a
least-squares, linear regression model. Chapter § contains a detailed account of the
use of diagnostic tests in the development of a model of the demand for gasoline.

Generalized Method of Moments (GMM)

Led initially by developments in macroeconomics, in particular “Euler equation
approaches,” GMM has become an increasingly important topic and has been given
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its own separate chapter (Chapter 10). As work in this area has developed, it has
become apparent that GMM also provides a pedagogically useful way to look at old
questions. In particular, the role of the “orthogonality condition” is highlighted as
an organizing framework for looking at some old problems (OLS, 2SLS, Hausman
tests, and even classical experimental design.)

Computationally Intensive Methods

One consequence of the “computer revolution” is the increased use of methods
that, not too many years earlier, were computationally prohibitive. In Chapter 11, we
review several of these methods: Monte Carlo methods, the bootstrap, permutation
tests, and nonparametric estimation methods. As several of these techniques have
merited separate treatises, it is impossible to cover the topics comprehensively. In-
stead the chapter aims at a more modest goal: to introduce the student to several of
these developments and to provide an understanding of some basic principles and
their potential range of application. Toward that end, several simple examples are
presented in the text in some detail in the hope that the student can begin to use
some of these techniques even in more realistic and complex situations.

Microeconometrics

Perhaps nowhere else has the increased sophistication of statistical software
made a greater mark on econometric practice than in microeconometric applications.
Chapter 12, on panel data, introduces the student to the simplest models—the fixed
effect and random effect models—that are routinely applied to the ever-increasing
number of panel data sets available. We also attempt to provide the student with prac-
tical advice about the advantages and disadvantages of these techniques. In Chapter
13 we review limited dependent variable models. Our review is selective: The lit-
erature is so vast, and the techniques available to researchers in statistical programs
so numerous, that the temptation to provide a “cookbook™ rendition of these topics is
very strong. We have resisted the temptation as far as possible. This has meant the
omission of some important topics—to name just two, hazard models and models
with multiple choices (except the ordered probit). On the other hand, we go through
the probit and logit models in some detail using an empirical illustration with the data
diskette. As some software packages routinely calculate “Huber” standard errors for
the probit and logit, it was felt some discussion of heteroscedasticity in these models
and quasi-maximum likelihood was necessary. A discussion of heteroscedasticity in
the Tobit led us to include two recent techniques for the censored regression model:
“symmetrically trimmed least squares” and “least absolute deviations.” The chap-
ter concludes with a brief discussion of the ubiquitous “Heckman correction” and
related issues.
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2.1.1 Constant Growth Curves

Taking first differences of Eq. (2.5) gives
AY, = B + (u —u—y)
If we ignore the disturbances, the implication of Eq. (2.5) is that the series increases
(decreases) by a constant amount each period. For an increasing series (8 > (), this
implies a decreasing growth rate, and for a decreasing series (8 < 0), the specifica-
tion gives an increasing decline rate. For series with an underlying constant growth
rate, whether positive or negative, Eq. (2.5) is then an inappropriate specification.
The appropriate specification expresses the logarithm of the series as a linear func-
tion of time. This result may be seen as follows.
Without disturbances a constant growth series is given by the equation

Y, = Yo(1 + g)f (2.6)

where g = (¥, — Y,—-1)/Y,_1 is the constant pri)pornunate rate of growth per period.
Taking logs of both sides of Eq. (2.6) gives!

In¥; = a+ Bt (2.7)
where a =In¥y and B =1In(l+g) (2.8)

If one suspects that a series has a constant growth rate, plotting the log of the series
against time provides a quick check. If the scatter is approximately linear, Eq. (2.7)
can be fitted by least squares, regressing the log of Y against time. The resultant
stope coefficient then provides an estimate § of the growth rate, namely,

=In(l+g) pgiving g=¢e"—1

The B coefficient of Eq. (2.7) represents the continuous rate of change & In ¥,/dt,
whereas g represents the discrete rate. Formulating a constant growth series in con-
tinuous time gives

Y, = YoeP? or InY, = a + Bt
Finally, note that taking first differences of Eq. (2.7) gives
AlnY, =B =In(l +g)=¢g 2.9)

Thus, taking first differences of logs gives the continuous growth rate, which in turn
is an approximation to the discrete growth rate. This approximation is only reason-
ably accurate for small values of g.

2.1.2 Numerical Example
Table 2.1 gives data on bituminous coal output in the United States by decades from

1841 to 1910. Plotting the log of output against time, we find a linear relationship.

"We use In to indicate logs to the natural base e,
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TABLE 2.1
Bituminous coal output in the United States, 1841-1910

Average annual output
(1,000 net tons),

Decade Y InY t InY)
1841-1850 1,837 7.5159 =3 —22.5457
18511860 4,868 8.4904 -2 —16.9809
1861-1870 12,411 9.4263 -1 —9.4263
1871-1880 32,617 10.3926 0 0
1881-1890 82,770 11.3238 1 11.3238
1891-1900 148,457 11.9081 2 23.8161
1901-1910 322,958 12,6853 3 38,0558

Sum 71.7424 V] 24,2408

So we will fit a constant growth curve and estimate the annual growth rate. Setting
the origin for time at the center of the 1870s and taking a unit of time to be 10 years,
we obtain the ¢ series shown in the table. From the data in the table

_ >In¥Y _ 717424

a = 10.2489
n 7
S tlnY  24.2408
==_"_" ="__"" =,
b= <0 - 8657

The 7 for this regression is 0.9945, confirming the linearity of the scatter. The esti-
mated growth rate per decade is obtained from

8=¢e"—1=13768

Thus the constant growth rate is almost 140 percent per decade. The annual growth
rate (agr) is then found from

(1 + agn'® = 2.3768

which gives agr = 0.0904, or just over 9 percent per annum. The equivalent contin-
uous rate is 0.0866.

The time variable may be treated as a fixed regressor, and so the inference pro-
cedures of Chapter 1 are applicable to equations like (2.5) and (2.7).2

2.2
TRANSFORMATIONS OF VARIABLES

The log transformation of the dependent variable in growth studies leads naturally
to the consideration of other transformations. These transformations may be of the

*For a very useful discussion of the use of time as a regressor, see Russell Davidson and James G.
MacKinnon, Estimation and Inference in Econometrics, Oxford University Press, 1993, pp. 115-118,
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dependent variable, the regressor variable, or both. Their main purpose is to achieve
a linearizing transformation so that the simple techniques of Chapter 1 may be
applied to suitably transformed variables and thus obviate the need to fit more com-
plicated relations.

2.2.1 Log-Log Transformations

The growth equation has employed a transformation of the dependent variable. Many
important econometric applications involve the logs of both variables. The relevant
functional specification is

Y = AXP or In¥ =a+8InX (2.10)
where e = In A. The elasticity of ¥ with respect to X is defined as
. dY X
Elasticity = XY

It measures the percent change in ¥ for a 1 percent change in X. Applying the elas-
ticity formula to the first expression in Eq. (2.10) shows that the elasticity of this
function is simply B, and the second expression in Eq. (2.10) shows that the slope
of the log-log specification is the elasticity. Thus Eq. (2.10) specifies a constant
elasticity function. Such specifications frequently appear in applied work, possibly
because of their simplicity and ease of interpretation, since slopes in log-log regres-
sions are direct estimates of (constant) elasticities. Figure 2.1 shows some typical
shapes in the ¥, X plane for various 8s.

0

FIGURE 2.1
Y = AXP,



