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Conversion of Sl Units to USCS Units

Conversion

Quantity SI unit factor USCS unit

Area square meter, m? 10.76391 square foot, ft’
square milimeter, mm? 0.001550 square inch, in?

Energy joule, J 0.737561 foot-pound, ft-1b
megajoule, MJ 0.277778 kilowatthour, kWh
joule, J 0.0009478 British thermal unit, Btu

Force newtont, N 0.22481 pound, Ib
kilonewton, kN 0.22481 kip (1000 pounds)

Length meter, m 3.28084 foot, ft
millimeter, mm 0.03937 inch, in
kilometer, km 0.6213722 mile, mi

Mass kilogram, kg 0.068522 slug, Ib - s¥/ft

Moment newton-meter, N-m 0.73756 foot-pound, ft-1b
newton-meter, N-m 8.85073 inch-pound, in-1b
kilonewton-meter, kKN-m | 0.73756 foot-kip, ft-kip *

Power watt, W 0.737561 foot-pound per second,

ft-1b/s
watt, W 0.001341 horsepower, hp
Stress pascal, Pa 0.0208854 pounds per square foot,
(pressure) Ib/ft?
megapascal, MPa 145.04 pounds per square inch,
Ib/in?

Temperature | degrees Celsius, °C 1.8°C /32 degrees Fahrenheit, °F

Volume cubic meter, m? 35.3147 cubic foot, ft?
cubic millimeter, mm? 61.0236 X 10~¢ | cubic inch, in®

t A newton is the force requlred to accelerate a 1-kg mass by a constant acceleration of 1 m/s%
A pascal is equal to IN/m?%
NoTE: To convert USCS units to SI units divide by the conversion factor. For temperature,
= (5/9)(CF — 32).

Sl Prefixes
Multiplication Multiplication
Prefix | Symbol factor Prefix | Symbol factor
tera T 102 milli m 103
giga G 10° micro M 10>*
mega M 108 nano n 102
kilo k 10° pico p 10712
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Preface

This is the second of a series of two books which cover in a unified
way the most important methods for analyzing framed structures.
The first book is entitled Classical Structural Analysis: A Modern
Approach, and as its title indicates it is devoted entirely to the
classical methods. These methods are best suited for analyzing
relatively simple structures by hand calculations. This second book is
devoted to the modern (matrix) methods for analyzing framed
structures. These methods have been developed in the last 30 years
and are best suited for writing programs for analyzing framed
structures by computer.

These two books have been written as reference texts for practicing
engineers and could be used as texts for undergraduate and graduate
courses in structural analysis. The knowledge required for studying
them is contained in basic books in statics, strength of materials,
calculus, and elements of matrix algebra. In each section of these
books, the presentation of the pertinent theory is followed by a
number of solved examples which contribute to a better understand-
ing of the theory and illustrate its application. The structures
analyzed in these examples have only a few unknown quantities and
thus lengthy calculations are avoided. However, these structures can
be readily analyzed employing one of the more physically obvious
classical methods and, consequently, the advantage of the matrix
methods may not always become apparent. A number of photographs
of interesting structures with a brief description and sketches of
important details are presented in the two books. They bring to the
attention of the reader some of the interesting structural or aesthetic
features of these structures, as well as ingenious aspects of their
construction.

This book is divided into six parts. Part 1 consists of Chaps. 1 to 3.
In Chap. 1 certain preliminary concepts are presented, including
definitions of terminology, sign conventions, and a discussion of the
idealizations and assumptions made in the analysis of framed
structures. In Chap. 2 the fundamental relations of the mechanics of
materials theories which are pertinent to the analysis of framed
structures are established, and the strong forms of the boundary-
value problems for computing the components of displacement and
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the internal forces and moments of the elements of framed structures
are formulated. In Chap. 3 the modern methods (direct stiffness and
modern flexibility) for analyzing framed structures are introduced by
applying them to a simple example. Our aim in this chapter is to
demonstrate the salient features of these methods and to describe the
important steps which must be followed when applying them,
without delving into details. Moreover, we indicate some of the
advantages and disadvantages of these methods.

In modern structural analysis a framed structure is considered to
be an assemblage of one-dimensional (line) elements whose ends are
connected to a number of points called nodes. The response of a
structure is determined from the response of its elements. Thus in
Part 2 (Chaps. 4 to 6) the matrices and the equations which are used
to describe the response of an element are established, while in Parts
3 and 4 methods for assembling and solving the equations which
describe the response of a structure are presented.

In modern structural analysis the response of an element is
regarded as the sum of its response when subjected to the given loads
acting along its length with its ends fixed and its response when
subjected only to the displacements of its ends. In the first case the
response of an element is described by its fixed-end actions (see
Chap. 4). In the second case the response of an element is described
either by its stiffness equations (see Chap. 4) or by its flexibility
equations (see Chap. 5). In Chap. 6 the transformation matrices are
formed for transforming the components of internal actions and of
displacements of an element from local to global and vice versa.

Part 3 consists of Chaps. 7 to 14 and is devoted to the direct
stiffness or direct displacement method. This method is used in
practice almost exclusively when writing programs for analyzing
framed structures by computer. In this method the analysis of a
structure (statically determinate or indeterminate) is formulated in
terms of the components of displacements of its nodes.

In modern structural analysis the response of a structure is
regarded as the sum of its response when subjected to the given loads
with its nodes fixed and its response when subjected to equivalent
actions on its nodes, that is, to the concentrated forces and moments
which, when applied to the nodes of a structure, displace each one of
them by an amount equal to the displacement of the corresponding
nade of the structure subjected to the given loads. Chapter 7 is
devoted to the analysis of structures subjected to given loads with
their nodes fixed and to the computation of the equivalent actions.
The response of a structure subjected to equivalent actions on its
nodes is expressed either by its stiffness equations or by its flexibility
equations. In Chap. 8 methods for assembling the stiffness equations
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for a structure directly from the stiffness equations for its elements
are presented. In Chap. 9 the boundary conditions of the structure
are introduced into its stiffness equations, which are then solved to
give the components of displacements of the nodes of the structure
and its reactions. Subsequently, the components of displacements of
the nodes of the structure are used to compute the internal actions
acting on the ends of its elements. In Chap. 10 the direct stiffness
method is extended to structures having skew supports or other
special constraints. In Chap. 11 an effective procedure for program-
ming the analysis of framed structures using the direct stiffness
method is described.

Chapters 7 to 9, due to their introductory nature, cover only the
basic procedures used in the direct stiffness method. Chapters 10 and
12 to 14 cover some of the special procedures which are essential for
the efficient solution of the out-of-the-ordinary problems encountered
in practice. In Chap. 12 a method is presented for condensing the
stiffness equations for a structure by eliminating a number of specific
unknown components of displacements of its nodes. Moreover, a
method is presented for computing the approximate response of
elements of complex geometry and loading. Chapter 13 is devoted to
the method of substructures. In this method a structure is subdivided
into parts, referred to as substructures, each substructure is
analyzed, and the results are combined to obtain the components of
displacements of the nodes of the structure. In Chap. 14 procedures
for analyzing redesigned structures are presented, using the results
of the analysis of the original structure.

Part 4 consists of Chaps. 15 to 17 and is devoted to the modern
flexibility or modern force method. In this method the procedures used
to analyze statically determinate structures differ from those used to
analyze statically indeterminate structures. In Chap. 15 systematic
procedures are presented for writing (1) the equations of equilibrium
for the nodes of a structure and (2) the equations of compatibility of
the components of displacements of the ends of each element of a
structure with the components of displacements of the nodes, to
which the element is connected. In Chap. 16 the components of dis-
placement of statically determinate structures are computed by using
the flexibility and stiffness methods. The procedures described in
Chaps. 15 and 16 can be used very effectively to write programs for
analyzing statically determinate structures by computer. However,
such programs are of rather limited scope and, consequently, practi-
cal application. In Chap. 17 the modern flexibility method for
analyzing statically indeterminate framed structures is presented. In
this method the analysis of a structure is formulated in terms of some
of its reactions and/or internal actions (redundants). Up to now this
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method has found little practical use in writing general computer
programs for analyzing statically indeterminate structures. A major
reason for this is that the choice of the unknown internal actions
and/or reactions (redundants) is not unique and it affects the
stability of the matrices which must be inverted in order to analyze a
statically indeterminate structure. Thus it is possible that the
modern flexibility method could find more practical applications
when effective procedures are established for obtaining the optimum
choice of redundants by computer.

In Part 2 we establish the response of an element by solving
the differential equations of equilibrium for the segments of the
element and by satisfying its boundary conditions. In Parts 3 and 4
we establish the response of a framed structure by directly satisfying
the requirements for equilibrium of its nodes and for compatibility of
the components of displacements of the ends of its elements with the
components of displacements of its nodes. In Part 5 we establish the
response of an element and of a structure by using the principle of
virtual work.

The principle of virtual work for a body represents an integral form
of the boundary-value problem for computing the components of
displacement strain and stress of this body. Integral forms of
boundary-value problems have been used extensively in constructing
approximate solutions for them (for example, weighted residual and
finite-element methods). In Chap. 18 the principle of virtual work for
a body is derived and specialized to framed structures. In Chap. 19
the finite-element method is described and applied in conjunction
with the principle of virtual work to establish approximate stiffness
equations and matrices of fixed-end actions for elements of framed
structures. Moreover, the principle of virtual work is employed to
establish exact formulas for the flexibility coefficients for certain
types of elements, including tapered and curved. In Chap. 20 the
principle of virtual work is employed to (1) compute a component of
displacement of a point of a framed structure (method of virtual work
or dummy load method) and (2) obtain the stiffness equations for a
structure.

The last part of this book contains two appendices. Appendix A is a
brief introduction to the concept and applications of the functions of
discontinuity. Appendix B is an outline of the elements of vector
analysis used in this book.

The author is deeply appreciative of and forever grateful to his
valued colleague, his late wife Stella, who provided inestimable
assistance and indefatigable support during the preparation of this
book. Moreover, the author wishes to express his appreciation and
thanks to Dr. Theodore Balderes of Grumman Aerospace Corp. for
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reading the entire manuscript and making many valuable sugges-
tions, and to Professor H. H. Pan of Polytechnic University and
Professors John T. Katsikadelis, Vlasis C. Koumousis, and M.
Papadrakakis of the National Technical University of Athens for
reading parts of the manuscript and making helpful comments.

This book was written during the time the author was professor
and director of the Institute of Structural Analysis of the National
Technical University of Athens. Miss Dia Troullinou typed the first
draft of the manuscript and Mrs. Evgenia Kapou typed the revised
manuscript. Their superior ability and patience is greatly
appreciated.

Anthony E. Armenadkas



A

A,
{A} or {A}

{A7} or {A%}

{A%)

{A%)}

(A%} or {AF}

{ARe} or {ARe}

(A%

{a}

Partial List of Symbols

Area.
Area of element e.

Local or global matrix of the nodal actions,
respectively, of an element of a structure sub-
jected to given loads. For an element of a
planar truss in the x,x, plane {A}” = [F}, F*],
while {A}" = [FY, F), F* F¥%]; for an element
of a planar beam or frame in the x,x, plane
{AY'=[F, F, M, F; F; M;5]; for
an element of a space beam or frame {A}” =
(F, F, F, My, M, M, F F; Fj
MY ML ML

Local or global matrix of nodal actions, respec-
tively, of element e of a structure (e=1,
2,...,NE).

Local matrix of nodal actions of an element of a
structure subjected to the equivalent actions on
its nodes.

Local matrix of nodal actions of element e of a
structure subjected to the equivalent actions on
its nodes.

Local or global matrix of nodal actions, respec-
tively, of an element of the restrained structure,
that is, the structure subjected to the given
loads with its nodes fixed against translation
and rotation.

Local or global matrix of nodal actions, respec-
tively, of element e of the restrained structure.

Global matrix of nodal actions of all the ele-
ments of the restrained structure. For a struc-
ture with NE elements {A®}7 =[{AR")}7
{ARZ}T . {A°RNE}T].

Matrix of basic nodal actions of an element of a
structure subjected to the given loads. For an
element of a truss we choose {a} =F%; for an
element of a planar beam or frame in the x,x,
plane we choose {a}” =[F* F% M?%]. For an



XX Partial List of Symbols

(@™

{a2™)

{ac™}

[B]

[B]

(61=(B1""

[C]

(€1

[e]1=[C]!

element of a space beam or frame we choose
{a}"=[F} F; F5 M} M; M;3)

Matrix of basic nodal actions of an element of a
structure subjected to equivalent actions on its
nodes.

Matrix of basic nodal actions of an element of
the restrained structure, that is, of the struc-
ture subjected to the given loads with its nodes
fixed against translation and rotation.

Matrix of basic nodal actions of element e of the
restrained structure.

Matrix of basic nodal actions of all the elements
of a structure subjected to equivalent actions
on its nodes. For a structure with
NE elements {d@*}7 =[{a®}7 {a®%)"
{aENE}T].

Matrix of the basic nodal actions of all the
elements of the model of a structure subjected
to equivalent actions on its nodes.

Matrix of the chosen redundant basic nodal
actions of the model of a structure subjected to
equivalent actions on its nodes.

Matrix of the basic nodal actions of the model
for a structure subjected to equivalent actions
on its nodes which are not included in the
matrix {aZ¥}.
Equilibrium matrix for a structure subjected to
equivalent actions on its nodes. It is defined by
{P*"} = [B]{@"}.
Equilibrium matrix for a structure subjected to
equivalent actions on its nodes. It is defined by
{a®}
{P*) =[B]= { }
—{R}
This matrix exists only for statically deter-
minate structures.

Compatibility matrix for a structure subjected
to equivalent actions on its nodes. It is defined
by [d]1=[C1{A"}.

Compatibility matrix for a structure subjected

to equévalent actions on its nodes. It is defined
{d} A

- {{As}} ~ [C1IAL

This matrix exists only for statically deter-

minate structures.



(D} or {D}

{D} or {D*}

{d}
{d}
{d}

E

E.

F? or F?
(i=1,2,3;q=jork)

F¢9 or F4
(i=1,2,3;g=jork)

FEa or FPe
(i=1,2,3;q=jork)

FRa or FRe
(i=1,2,3;9g=jork)

FEea op FRea
(i=1,2,3;gq=jork)

Partial List of Symbols xxi

Local or global matrix of nodal displacements,
respectively, of an element of a structure sub-
jected to given loads. It is identical to that of
an element of the structure subjected to
equivalent actions on its nodes. For an element
of a truss {D}" =[u} uf], while {D}" =[&
i, @* %]; for an element of a planar beam or
frame (D} =[w, u), 0, u® u% 06%]; for an
element of a space beam or frame {D}” = [u/,
u, uy 6, 6, 6, u uw, uh 6, 6, 6
Local or global matrix of nodal displacements,
respectively, of element e of a structure sub-
jected to given loads or to the equivalent
actions on its nodes.

Matrix of the basic deformation parameters of
an element of a structure.

Matrix of the basic deformation parameters of
element e of a structure.

Matrix of the basic deformation parameters
of all the elements of a structure. For a
structure with NE elements {d}” =
[{d"}" {d®T ... {d"F}"].

Modulus of elasticity.

Modulus of elasticity of element e.

Local or global component in the x; or x;
direction, respectively, of the internal force
acting at the end g (¢ =j or &) of an element of
a structure subjected to given loads.

Local or global component in the x; or x;
direction, respectively, of the internal force
acting at the end g (¢ =j or k) of element e of a
structure subjected to given loads.

Local or global component in the x; or «x;
direction, respectively, of the internal force
acting at the end q (¢ =j or k&) of an element of
a structure subjected to equivalent actions on
its nodes.

Local or global component in the x; or x;
direction of the internal force, respectively,
acting at the end g (¢ =j or k) of an element of
the restrained structure, that is, the structure
subjected to the given loads with its nodes fixed
against translation and rotation.

Local or global component in the x; or %;
direction of the internal force, respectively,
acting at the end g (¢ =j or k) of an element e



xxii Partial List of Symbols

[f]

(71

(71

G

L (i=2,3)

I (i=2,3)

J
K
[K] or [K]

[K°] or [K°]

[k]

%]

L

Le

M2 or MP
_,‘{(A) or Ju(a)
M, (x;)

M¢ or M?¢

(i=1,2,3;9=jork)

M¢ or M<?
(i=1,2,8;q=jork)

of the restrained structure, that is, the struc-
ture subjected to the given loads with its nodes
fixed against translation and rotation.

Flexibility matrix for an element of a structure.
Flexibility matrix for element e of a structure.

Flexibility matrix of all the elements of a
structure defined by relation (16.9).

Shear modulus.

Moment of inertia of the cross section of an
element about its x; (i =2,3) principal cen-
troidal axis.

Moment of inertia of the cross section of ele-
ment e about its x; (i =2,3) principal cen-
troidal axis.

Polar moment of inertia of the cross section of
an element.

Torsional constant of the cross section of an
element.

Local or global stiffness matrix for an element
of a structure, respectively.

Local or global stiffness matrix for element e of
a structure, respectively.

Basic local stiffness matrix for an element of a
structure. It relates its basic nodal actions to
its basic deformation parameters {a} = {k}{d}.

Basic local stiffness matrix for element e of a
structure defined by relations (16.12).

Length.
Length of element e.

Local component in the x; (i =1, 2, 3) direction
of the concentrated external moment acting on
point A or 3 of an element of a structure,
respectively.

Concentrated external moment vector acting
on point A or 3 of a structure, respectively.

Local component in the x; (i =1, 2, 3) direction
of the internal moment of an element.

Local or global component in the x; or x;
direction, respectively, of the internal moment
acting at the end g (¢ =j or k) of an element.

Local or global component in the x; or %;
direction, respectively, of the internal moment
acting at the end q (¢ =j or k) of element e.



m;(x,) 1=1,2,3)

m(x;)
Nor N(x,)

P?orP® (i=1,2,3)
P(A)
{P*}

{P*"}

{P*}

{P%)

piorp;(x,) 1=1,2,3)

R(-")

S(_n)

u or u(x,)

u,»(xl) (l = 1, 2, 3)

ui(x,) (i=1,2,3)

u®oru® (i=1,2,3)

Partial List of Symbols xxiil

Component in the x; direction of the external
distributed moment acting on an element. It is
given in units of moment per unit length of the
element.

External distributed moment vector acting on
an element.

Axial component of internal force in an
element.

Local components in the x; direction of the
concentrated external force acting on point A or
3 of an element of a structure, respectively.

Concentrated external force vector acting on
point A of a structure.

Matrix of the global components of the
equivalent actions acting on all the nodes of a
structure.

Matrix of the global components of the
equivalent actions acting on the nodes of a
structure, which are not directly absorbed by
its supports.

Matrix of the global components of the
equivalent actions acting on the nodes of a
structure, which are directly absorbed by its
supports.

Matrix of the global components of the given
actions acting on the nodes of a structure.

Distributed external forces acting on an ele-
ment. It is given in units of force per unit of
length of the element.

Local component in the x; direction of the
distributed external forces acting on an
element.

Global component in the x; direction of the
reaction at support n of a structure.

Global component in the x; direction of the
restraining action acting on node n of a
structure.

Translation vector of the points of an element.
Local component in the x, direction of the
translation vector of the points of an element.

Local component in the x; direction of the
translation vector of the points of element e of a
structure.

Local component in the x; direction of the
translation vector of point A or point 3 of an
element of a structure, respectively.
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uf(x;) i=1,2,8)

ul(x) i=1,2,3)

ul (gq=jork;i=1,2,3)

ui?(@q=jork;i=1,2,3)

{u}

4;(xy,x9,%3) 1=1,2,3)

T4,
T

AT,

[T]
x(2=1,2,3)

x(1=1,2,3)
f.’ (i=1: 2: 3)

@
67 (i=1,2,3)

Local component in the x; direction of the
translation vector of the points of an element of
a structure subjected to equivalent actions.

Local component in the x; direction of the
translation vector of the points of an element of
the restrained structure.

Local component in the x; direction of the
translation of the end ¢ (9 =j or k) of an
element of a structure subjected either to the
given loads or to the equivalent actions.

Local component in the x; direction of the
translation of the end q (¢ =j or k) of element e
of a structure subjected either to the given
loads or to the equivalent actions.

Matrix of the basic components of displacement
of an element. For an axial deformation ele-
ment {u}=u,(x,). For a general planar ele-
ment {u}” =[u,(x;) us(x;)]. For a general
space element {u}” =[u,(x;) u,(x;) us(x;)
0,(xy)].

Component of displacement in the x; direction
of the particles of a deformable body.

Temperature of the points of a cross section of
an element of the structure where the positive
and negative x, (k=2,3) axis, respectively,
intersects the perimeter of its cross section.

Uniform temperature at the stress-free state of
a structure, that is, the temperature at which
the structure was constructed.

Change of temperature at the centroid of the
cross sections of an element of a structure. It
could be a function of x;,.

Matrix which transforms the matrix of basic
nodal actions to the matrix of nodal actions of
an element of a structure subjected to
equivalent actions on its nodes {A*} = [T'1{a”}.
Local cartesian coordinate of a point of an
element. The coordinate x; is measured along
the axis of the element from its end ;.

Local cartesian coordinate of a point of element
e.

Global cartesian coordinate of the points of a
structure.

Coefficient of linear thermal expansion.

Component of rotation about the x; axis of the
end q (g =j or k) of an element of a structure.



