
Design Fundamentals for Low-Voltage Distribution and Control

Frank W. Kussy Jack L. Warren

Design Fundamentals for Low-Voltage Distribution and Control

FRANK W. KUSSY

Consultant Randallstown, Maryland

JACK L. WARREN

Chrysler Corporation Highland Park, Michigan Library of Congress Cataloging-in-Publication Data

Kussy, Frank W.

Design fundamentals for low-voltage distribution and $\mbox{control.}$

(Electrical engineering and electronics; 35) Includes bibliographies and index.

1. Electric switchgear--Design and construction.

I. Warren, Jack L. II. Title. III. Series. TK2821.K83 1986 621.31'7 86-23960 ISBN 0-8247-7515-5

COPYRIGHT © 1987 by MARCEL DEKKER, INC. ALL RIGHTS RESERVED

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

MARCEL DEKKER, INC. 270 Madison Avenue, New York, New York 10016

Current printing (last digit): 10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

Design Fundamentals for Low-Voltage Distribution and Control

ELECTRICAL ENGINEERING AND ELECTRONICS

A Series of Reference Books and Textbooks

Editors

Marlin O. Thurston
Department of Electrical
Engineering
The Ohio State University
Columbus, Ohio

William Middendorf
Department of Electrical
and Computer Engineering
University of Cincinnati
Cincinnati, Ohio

- 1. Rational Fault Analysis, edited by Richard Saeks and S. R. Liberty
- 2. Nonparametric Methods in Communications, edited by P. Papantoni-Kazakos and Dimitri Kazakos
- 3. Interactive Pattern Recognition, Yi-tzuu Chien
- 4. Solid-State Electronics, Lawrence E. Murr
- 5. Electronic, Magnetic, and Thermal Properties of Solid Materials, Klaus Schröder
- 6. Magnetic-Bubble Memory Technology, Hsu Chang
- 7. Transformer and Inductor Design Handbook, Colonel Wm. T. McLyman
- 8. Electromagnetics: Classical and Modern Theory and Applications, Samuel Seely and Alexander D. Poularikas
- 9. One-Dimensional Digital Signal Processing, Chi-Tsong Chen
- 10. Interconnected Dynamical Systems, Raymond A. DeCarlo and Richard Saeks
- 11. Modern Digital Control Systems, Raymond G. Jacquot
- 12. Hybrid Circuit Design and Manufacture, Roydn D. Jones
- 13. Magnetic Core Selection for Transformers and Inductors: A User's Guide to Practice and Specification, *Colonel Wm. T. McLyman*
- 14. Static and Rotating Electromagnetic Devices, Richard H. Engelmann
- Energy-Efficient Electric Motors: Selection and Application, John C. Andreas
- 16. Electromagnetic Compossibility, Heinz M. Schlicke
- 17. Electronics: Models, Analysis, and Systems, James G. Gottling

- 18. Digital Filter Design Handbook, Fred J. Taylor
- 19. Multivariable Control: An Introduction, P. K. Sinha
- 20. Flexible Circuits: Design and Applications, Steve Gurley, with contributions by Carl A. Edstrom, Jr., Ray D. Greenway, and William P. Kelly
- 21. Circuit Interruption: Theory and Techniques, Thomas E. Browne, Jr.
- 22. Switch Mode Power Conversion: Basic Theory and Design, K. Kit Sum
- 23. Pattern Recognition: Applications to Large Data-Set Problems, Sing-Tze Bow
- Custom-Specific Integrated Circuits: Design and Fabrication, Stanley L. Hurst
- 25. Digital Circuits: Logic and Design, Ronald C. Emery
- 26. Large-Scale Control Systems: Theories and Techniques, Magdi S. Mahmoud, Mohamed F. Hassan, and Mohamed G. Darwish
- 27. Microprocessor Software Project Management, Eli T. Fathi and Cedric V. W. Armstrong (Sponsored by Ontario Centre for Microelectronics)
- 28. Low Frequency Electromagnetic Design, Michael P. Perry
- Multidimensional Systems: Techniques and Applications, edited by Spyros G. Tzafestas
- AC Motors for High-Performance Applications: Analysis and Control, Sakae Yamamura
- 31. Ceramic Materials for Electronics: Processing, Properties, and Applications, edited by Relva C. Buchanan
- 32. Microcomputer Bus Structures and Bus Interface Design, *Arthur L. Dexter*
- 33. End User's Guide to Innovative Flexible Circuit Packaging, Jay J. Miniet
- 34. Reliability Engineering for Electronic Design, Norman B. Fuqua
- 35. Design Fundamentals for Low-Voltage Distribution and Control, Frank W. Kussy and Jack L. Warren
- Encapsulation of Electronic Devices and Components, Edward R. Salmon

Additional Volumes in Preparation

Electrical Engineering-Electronics Software

- 1. Transformer and Inductor Design Software for the IBM PC, Colonel Wm. T. McLyman
- 2. Transformer and Inductor Design Software for the Macintosh, Colonel Wm. T. McLyman
- 3. Digital Filter Design Software for the IBM PC, Fred J. Taylor and Thanos Stouraitis

For the children, Tamara and Joshua

Preface

This book is written for the electrical engineers and graduate students who will design low-voltage distribution and control equipment. To our knowledge, there is no other comprehensive book on this subject published in the United States. This fact seems astonishing since this equipment is vital to modern factory automation in this country. Each year more than \$8 billion worth of such equipment is sold in the U.S.

There are several books and papers available that treat design problems for specific devices. Yet, no single book has included the basic design fundamentals for this family of equipment. The engineer who wanted an overview of this information would have had to collect several papers together. Even then, the engineer had to rely on experience plus trial-and-error design. A more systematic approach is needed if our engineers are to be leaders in this field.

This book describes the design fundamentals for several types of electrical equipment: circuit breakers, contactors, safety switches, panels, starters, relays, bus duct conductors, switchboards, switchgear, and control gear. Also discussed are recent developments that have caused significant progress in this field. Among these developments are new techniques for: heat transfer calculation, contact design, are chamber construction, magnet efficiency, are interruption in a vacuum, fuse design, fault and ground fault detection, and terminals for aluminum connections.

vi Preface

Dr. Kussy first wrote a book on this subject in 1950 (Elektrische Niederspannungsschaltgeräte und Antriebe, Technischer Verlag Herbert Cram, Berlin). A completely revised edition was published in 1969. In the years since, science and engineering have made tremendous progress in this field. Electronic and electromechanical devices have been combined in different ways to form new, innovative systems. A completely new book seemed necessary. The need for this book was not to discuss the detailed development of any single device. Since these devices are mainly used together in systems, the new book would address design fundamentals for the whole family of equipment.

The design fundamentals of electronic equipment are not included in this book. Basic devices such as transistors, triacs, silicon-controlled rectifiers, microprocessors, and PC boards have been adequately described in other recent books. It seems that publications about electronic equipment are frequent because progress in this field has been revolutionary.

By contrast, progress in the field of electromechanical equipment has been only evolutionary. Still, the changes have been significant and frequent. The scope of change is broader than the management of most American companies realizes or appreciates. This fact is evident if we look at modern current-limiting circuit breakers, contactors, relays, or fuses—size has been reduced significantly, while both electrical performance and production costs have markedly improved (compared to an equivalent device built 25 years ago). It is also evident that research and development have been conducted on a worldwide basis—all industrial nations have been involved in this effort.

The market for this equipment has also changed, becoming more international. While there are still differences between equipment designed for Europe and the United States, the differences have diminished. The International Electric Commission (IEC) has made significant efforts to standardize this equipment. In the U.S., standards are written by Underwriters Laboratory (UL), National Electrical Manufacturers Association (NEMA), Institute of Electrical and Electronic Engineers (IEEE); industry groups such as American Air Conditioning Institute; and by large corporations such as Ford Motor Company. This book recognizes and discusses how these differing standards affect the design requirements for these devices and systems.

To compete in the international market, American manufacturers must devote much more effort and money to research and development. Engineers will need to have knowledge of both the design fundamentals and the current state-of-the-art practices. This book is written for senior engineers and graduate students who will direct the future research effort. It is our hope that they earn their share of patents in this field.

The authors wish to thank the two people who contributed so much effort to the typing and editing of the original manuscript, Laura Grzeskowiak and Mary Krebsbach.

Contents

Preface		7	
1	IMP	EDANCE OF CONDUCTORS	1
	1.1	Resistance of Conductors	1
	1.2	Reactance of Single-Phase Conductor Cables	16
	1.3	Impedance of Multiphase Bus Systems	22
	1.4	Bus Systems with Low Reactance	25
	1.5	Bus Systems with High Reactance	27
	1.6	Effect of Bus Impedance on Housing Currents	27
	1.7	Voltage-Drop Determinations in Low-Impedance	
		Bus Duct Systems	28
		References	30

viii	Contents

2	HEA	T TRANSFER IN ELECTRICAL COMPONENTS	31
	2.1	Heat Produced by Electrical Current	32
	2.2	Heat Stored in Electrical Components	32
	2.3	Heat Loss by Radiation	34
	2.4	Radiant Heat Transfer Between Dissimilar Materials	37
	2.5	Heat Transfer by Conduction	37
	2.6	Heat Loss by Convection	40
	2.7	Combined Modes of Heat Transfer	44
	2.8	Superimposed Exponential Method of Approximating	
		Temperature Rise Due to Convection and Conduction	47
	2.9	Combined Convective and Conductive Heat Transfer in a	
		Homogeneous Body: A More Accurate Method	48
	2.10	Combined Convective, Conductive, and Radiant	
		Heat Transfer in a Homogeneous Body	52
	2.11	Combined Modes of Heat Transfer for	=0
		Nonhomogeneous Bodies	53
	2.12	Example: Calculation of the Temperature Rise	
		in a Nonhomogeneous Body	57
		References	61
3	SELE	CCTION OF CONDUCTOR SIZES	63
	3.1	Permissible Temperature-Rise Criteria	63
	3.2	Changes in Physical Properties Due to	
		Temperature Exposure	65
	3.3	Ampacity of Conductors	67
	3.4	Selection of Conductors Internal to Apparatus	73
	3.5	Wire Sizes Used in Contractor Installations	75
		References	76
4	TRA	NSIENT CURRENT PHENOMENA	77
-			
	4.1	Short-Circuit Computations in DC Circuits	# 0
	4.0	with Constant Self-Inductance	78
	4.2	Short-Circuit Computations in DC Circuits	0.0
	4 9	with Variable Self-Inductance	82
	4.3	Transient Currents in DC Circuits with Rectifying Components	84

Contents	ix

	4.4	Transient Current Calculations in AC Circuits	
		Under Fault Conditions	85
	4.5	Three-Phase AC Systems: Transient Currents	
		Associated with Fault Conditions	90
	4.6	Single- and Three-Phase AC Systems: Symmetrical and	
		Asymmetrical Short-Circuit Currents	91
	4.7	Synchronous Generator Reactances During Short Circuits	95
	4.8	Ground-Fault Currents	96
	4.9	Special Considerations: Short-Circuit Test Procedures	103
	4.10	Calculation of Available Short-Circuit Currents in a	
		Network Installation	104
		References	116
5	EFFI	ECTS OF SHORT-CIRCUIT CURRENTS ON CONDUCTORS	119
	5.1	Perpendicular Forces in Conductors During	THE NAME OF STREET
		Fault Conditions	119
	5.2	Longitudinal Forces in Parallel Conductors During	
	- 0	Fault Conditions	122
	$5.3 \\ 5.4$	Force Balance About a Conductor	125
	3.4	Conductor Heating Effects Associated with Fault Currents or High Overload Currents of Short Duration	126
			120
		References	130
6	FIXE	D ELECTRICAL CONTACTS AND JOINTS	133
	6.1	Permanent Connections	134
	6.2	Clamped Joints	135
	6.3	Theory of Current Flow in Bus Bar Joints: Effect of	
		Contact Resistance	136
	6.4	Belleville Washers in Clamped Joints	147
	6.5	Cable Connections	151
		References	157
7	MOV	ABLE CONTACTS	159
	7.1	Copper Contact Materials	160
	7.2	Copper Alloy Contact Materials	162

x Contents

7.3	Copper-Based Material in Vacuum Contactors	
	and Circuit Breakers	163
7.4	Silver Contact Materials	165
7.5	Internally Oxidized Silver-Cadmium-Oxide Materials	165
7.6	Powdered Silver-Cadmium-Oxide Contact Materials	166
7.7	Silver-Tin-Oxide and Silver-Zinc-Oxide Contact Materials	167
7.8	Silver-Nickel Alloy Contact Materials	167
7.9	Silver-Tungsten Contact Materials	168
7.10	Silver-Molybdenum Contact Materials	169
7.11	Silver-Tungsten-Carbide Contact Materials	169
	Silver-Graphite Contact Materials	170
7.13	Nonsymmetrical Contact Materials Used in Combination	170
7.14	Summary of Physical Properties of Movable	
	Contact Materials	171
7.15	Attachment of Movable Contacts	174
7.16	Riveting	177
7.17	Welded Contact Attachments	178
7.18	Brazed Contact Attachments	180
7.19	Inspection of Contact Attachments	182
7.20	Electrodynamic Forces on Movable Contacts—	
	Theoretical Determinations	183
7.21	Electrodynamic Forces in Contacts: Design Principles	188
7.22	Examples of Circuit Breakers and Switches Using	
	Blow-Off or Blow-On Contacts	191
7.23	Blow-Off Contacts in Current-Limiting Circuit Breakers	198
7.24	Loss of Contact Material from Movable Contacts	201
	Movement of Arc from Contact Surfaces	203
	Special Arcing Contacts	205
7.27	Bounce in Movable Contacts	206
7.28	Movable Contacts for Low-Voltage and	
	Low-Current Applications	209
7.29	Life Tests for Contactors	211
	References	214
INTE	CRRUPTION OF DC AND AC CIRCUITS	217
8.1	Theories of Interruption in DC Circuits	218
8.2	Theories of Interruption in AC Circuits	229
8.3	Some Guidelines for Arc Chamber Designs	238
8.4	Electromagnetic Techniques to Improve	
	Interrupting Capacity	241
8.5	Other Methods of Extinguishing Electrical Arcs	251
8.6	Interruption Tests for Symbolic AC Motor Currents	253

8

Contents xi

	8.7	Interruption of AC Circuits with Capacitance	258
	8.8	Switching Transformer Circuits	262
	8.9	Switching Contactors for Lighting Circuits: Parallel	
		Generators and Automatic Transfer Switches	263
	8.10	Interruption of Small AC and DC Currents	264
	8.11	DC Auxiliary Switches with Condenser Parallel	
		to Contacts	264
	8.12	Current-Limiting Circuit Breakers	266
	8.13	Current-Limiting Resistors Combined with	
		Circuit Breakers	276
	8.14	Single-Pole Interruption of Current-Limiting	
		Circuit Breakers	278
	8.15	Self-Renewable Fuses Combined with Circuit Breakers	279
	8.16	Air-Core Reactors	281
	8.17	Arc Interruption in Vacuum Chambers	282
		AC and DC Fuse Types	285
	8.19	Current-Limiting Fuses and Arc Interruption Processes	299
		References	308
9	MAG	NETS	311
	9.1	DC Electromagnets	313
	9.2	Calculation of Stroke-Force Characteristics for	
		DC Magnets	326
	9.3	AC Electromagnets	333
	9.4	Shading Coils for AC Electromagnets	341
	9.5	Techniques for Reducing Vibrations in AC Magnets	
		Without Shading Coils	352
	9.6	Calculation of Force-Stroke Characteristics and	
		Self-Inductances for AC Magnets	355
	9.7	Magnet Coil Construction	365
	9.8	Temperature Rise in Magnet Coils	371
	9.9	Permanent Magnets	378
		References	387
Tro	dex		389
ш	UCA		309

1

Impedance of Conductors

The impedance of electrical conductors has a significant effect on the design of most electrical equipment. The conductors in such apparatus include bus bars, cables, terminals, contacts, pigtails, resistant wires, and coils. Often, the overall size, cost, and feasibility of the entire apparatus is determined by the size of these conductors. In turn, physical size is usually determined by the permissible temperature rise or heat capacity, mechanical function, and electrical impedance requirements.

In this chapter we discuss the two components of conductor impedance, resistance and reactance. Temperature considerations are addressed in Chapters 2 and 3.

1.1 RESISTANCE OF CONDUCTORS

The calculation of electrical resistance is straightforward in direct-current (dc) circuits. The resistance R, in ohms, is given by

$$R = \frac{\ell \rho}{A}$$
 [1.1]

TABLE 1.1 Resistivity of Common Metals

	Resistivity ^a at 20°C (Ω -mm ² /m)	Percent change in resistivity per °C
Copper	0.0175	0.40
Silver	0.0163	0.41
Aluminum (EC grade)	0.0280	0.4
Aluminum (6101)	0.0318	0.4
Iron	0.1008	0.5
Cast iron	0.6 to 1.6	
Tungsten	0.055	0.5
Molybdenum	0.056	0.3
Nichrome (V) (80% Ni-20% Cr)	1.085	0.011
Manganin (13% Mg-87% Cu)	0.48	0.0015
Constantan	0.5	-0.005
Karma (73% Ni, 20% Cr,+ Fe + Al)	1.32	0.001
Radiohm	1.32	0.001
Brass	0.065 to 0.085	0.12 to 0.2
Graphite	12 to 40	-0.05 to -0.1
Iron wire	0.125	0.5

^aThere are many existing alloys with resistivity in the range 0.05 to 1.35 Ω -mm²/m.

where ρ is the material resistivity in Ω -mm²/m or 10⁴ Ω -cm, and ℓ and A are the length and area of the conductor in meters and square millimeters, respectively. Values of resistivity for most metals (and their common alloys) can be found in material handbooks, material data sheets, or in manufacturers' specifications. Table 1.1 lists the resistivity ρ of the more common conductor materials. Also included are the temperature coefficients, given as the percent change in resistivity per degree Celsius.

In alternating-current (ac) circuits, resistance calculations can be complex. Unfortunately, there are many instances where these complex