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Preface

This book is devoted to primarily continuous models for a special class of supply chains
often called production or supply networks. The aim is to present a mathematical description
of different phenomena appearing in planning and managing supply chains. We address both
the mathematical modeling as well as techniques for simulation and optimization purposes.

The problem of a continuous description of supply chains and production networks
dates back to the early 60’s and started with the work of [8, 30]. Significantly, the models
were proposed in particular for large volume production on complex networks where a
discrete description might fail. Since then, many methods and ideas have been developed
concerning the modeling of different features of supply chains, including the efficient simu-
lation and the optimization of product flows among suppliers and customers. In recent years
continuous and homogeneous product flow models have been introduced, for example, in
[2, 13, 23, 26, 27, 28, 29, 37, 41, 42]. These models have been built in close connection to
other transport problems like vehicular traffic flow and queuing theory. Hence, this suggests
that the obtained models should be given by partial differential equations for the product
flow, similar to those of gas dynamics. Depending on the problem at hand, these equations
are possibly accompanied by ordinary differential equations describing the load of invento-
ries. Also some optimization techniques have been proposed in order to answer questions
arising in supply chain planning [31, 50, 57].

Starting from a network formulation, we derive equations for a continuous description
of homogeneous product flows. The derivation is based on first principles, but the final
equations are closely related to discrete event simulations of supply chains. Additionally, we
present extensions to include more realistic phenomena. Such extensions consist of systems
of partial differential equations or coupled partial and ordinary differential equations. The
book surveys the underlying fundamentals and provides evolved mathematical techniques
for simulation and efficient optimization of the presented models.

The book is suitable for researchers and students in mathematics, physics, engineering,
economics, and related disciplines. Basically, the book could also be used as lecture notes for
a course in supply chain theory. Furthermore, interested readers can find many suggestions
and open problems for future research.

Atfirst, in Chapter 1, we give some elementary examples which serve as motivation for
the modeling approaches following, and then we report mathematical preliminaries about
conservation laws and numerical schemes for their discretization. Chapters 2-5 contain
a complete and elementary description of the state-of-the-art theory of continuous supply
chain models where also similarities and comparisons with already existing models are
given. Optimization problems and the corresponding solution techniques are the content
of Chapter 6. In particular, the interplay between discrete and continuous optimization
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problems is addressed. Numerical discretization issues and computational results in Chap-
ter 7 complete this book.

We would like to thank the staff at SIAM for their expert guidance and assistance
during this project. Special thanks go to Elizabeth Greenspan for her friendly and helpful
manner in answering editorial aspects. Furthermore, we are very grateful to our colleagues
Dieter Armbruster, Gabriella Bretti, Pierre Degond, Axel Klar, Claus Kirchner, Sebastian
Kiihn, Rosanna Manzo, and Christian Ringhofer, whose collaboration, interesting discus-
sions, and valuable advices influenced the material presented within this book. Finally,
we also wish to express our gratitude to our families for their patience and permanent
encouragement. This work was financially supported by Deutsche Forschungsgemeinschaft
(DFG), Deutscher Akademischer Austauschdienst (DAAD), RWTH Aachen Seed Funds,
the Istituto Nazionale d’ Alta Matematica “Francesco Severi” (INdAM) through the project
“Traffic flows and optimization on complex networks,” and the EU Network of Excellence
“HYCON.”
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Chapter 1

Introduction

A supply chain consists of suppliers, manufacturers, warehouses, and stores where parts
are produced and distributed among different production facilities. Mathematical models
are used to monitor cost-efficient distribution of parts and to measure current business
processes. Naturally, depending on the scale, these models are characterized by several
approaches which are either discrete (discrete event simulations) or continuous (differential
equations). The main difference between these two mathematical concepts is the description
of parts as individuals at discrete time instances or as a dynamic flow.

Simulations in general represent a powerful computing technique to analyze manufac-
turing systems while performing numerical experiments of the models. In case of discrete
event simulations the evolution of the system is viewed as a sequence of significant changes
in time, also called events, for each part separately. For instance, consider a supply chain
consisting of numerous consecutive facilities where parts arrive, get processed, and depart
when their service is completed. Informally, this means that the transportation of parts from
one production step to another characterizes dynamic events that can be easily evaluated
using performance measures like the number of parts in the system, the individual waiting
times, and so forth. Definitely, discrete event simulations serve as the finest level of descrip-
tion of interacting part-based systems but with the drawback of exponentially increasing
computing times for large-scale systems, i.e., up to 10° and more suppliers.

An alternative modeling approach which remedies the computational aspect is differ-
ential equations. In contrast to the discrete event simulation, averaged quantities in case
of large quantity production predict the time evolution of parts and include the dynamics
inside the different production steps. To derive accurate continuous models the overall
modeling goal is to transfer as much of the detailed and complex discrete model to the
continuous level. This will be achieved regarding dynamic flows, i.e., parts per time unit,
instead of individual parts. Since numerical schemes for differential equations allow for
fast simulation times, supply chain problems with multiple manufacturers and thousands
of parts are solved very cost effectively. Figure 1.1 gives an idea of how computing times
evolve when sample examples depending on 20.000 or 200.000 parts, respectively, are
simulated. Keep in mind that partial differential equations, a special choice of differential
equations, will always provide valid results if the size of the underlying problem is large
scaled.
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Figure 1.1. The efficiency of using partial differential equations (PDE) in compar-
ison with discrete event simulations (DES) is depicted. Three different scenarios of different
complexity varying the number of suppliers and parts as well are simulated over 400 time
periods.

In many applications the simulation and prediction of production systems is only one
important purpose. The formulation of optimization problems for supply chain management
is an immediate consequence of performing successful simulations. Nowadays, there exist
a variety of sophisticated models and adapted mathematical methods to find the optimal
load balance on the interconnections between different entities. Typically, such problems
are mainly tackled by methods of discrete optimization, linear and mixed-integer program-
ming methods or models based on differential equations. Simpler models based on linear
programs often neglect the time dependence of processes as well as nonlinear cost effects;
however, they are applicable to large-scale networks. On the other hand, advanced opti-
mization procedures recover the whole dynamics of the system while adjusting parameters
in the models in an optimal way. Concerning manufacturing problems this may include
the question of optimal processing parameters, minimizing inventories to reduce costs or to
ensure fully loaded production lines.

Mathematically, supply chain optimization problems are given by either the mini-
mization or maximization of an objective function (alternatively cost functional) satisfying
flow conservation and capacity constraints. A relevant example would be the optimal rout-
ing of parts through a network such that inventory costs are minimized. This situation
normally occurs whenever it is possible to distribute parts among several capacity-limited
suppliers; cf. Figure 1.2.

Here, the rate A denotes the percentage of parts coming from supplier e! continu-
ing on supplier ¢?, and equivalently A% determines the percentage of parts coming from
supplier e® continuing on supplier ¢®. The network allows for different capacity restrictions
of suppliers and the possibility to store surplus material in queues g°.

A bottleneck situation emerges from supplier ¢, which means that this capacity is
the lowest in the complete network. The visualization of all objective function values

1
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Figure 1.2. A network consisting of seven suppliers and exactly two critical points
AY2 and A% where the dispatch of parts obviously may be influenced.

x 10

Figure 1.3. Objective function values evaluated at all possible combinations of
A'2 and A%S. As can be seen in the plot, the minimal objective value is reached at A" = 1
and A* =0.4.

in Figure 1.3 shows a rather naive way to choose the best value from a set of available
alternatives. Nevertheless, we observe that the objective function has a unique minimum
and steep gradients as A>® — 1, due to the capacity bottleneck of supplier e®, which im-
plies an increasing inventory if filled by parts from supplier 2. More evolved mathematical
optimization methods are, for example, mixed-integer problems including dynamics which
are consistent with the underlying detailed description by partial differential equations
and/or particle/discrete event models. For the optimization of continuous supply chain
models one could proceed in a different way. In the differential equation framework a nat-
ural approach would be to use an optimization procedure based on the Lagrange principle
where the original constrained model is reformulated as an unconstrained one.
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Altogether, the objective of this book will be to highlight the different ways of mod-
eling supply chains and to emphasize their application for simulation and optimization
purposes as well. In particular, similarities of the models will be discussed, and evolved
mathematical methods governing the dynamic behavior of processes will be developed and
analyzed. A major focus is the description of the underlying dynamics using ordinary and
partial differential equations which may fit best in the context of mass production. More-
over, simulation and optimization procedures for these dynamical networks can be derived
in a straightforward way combining already existing and innovative procedures.



Chapter 2

Mathematical Preliminaries

2.1 Introduction to Conservation Laws

Some of the models for supply chains we present in this book are based either on scalar
or systems of hyperbolic conservation laws. A complete theory of hyperbolic systems
of conservation laws is beyond the aim of the book. The theory of conservation laws is
extensively described in many books, such as Bressan [10], Dafermos [21], Smoller [70],
or Holden and Risebro [54]. Important results have been established in the past years and
briefly revised some important results: the general solution to the Riemann problem for a
strictly hyperbolic system of conservation laws was first obtained by Lax. The first proof of
global existence for weak entropic solution appeared in the seminal paper by Glimm [34].
It is based on a construction of approximate solutions generated by Riemann problems
with a randomly restarting procedure. For the scalar case, there is another proof, based on
piecewise constant approximations, for the existence of an entropy admissible solution. This
method is due to Dafermos [21]. The wave-front tracking method was first introduced by
Di Perna, and then it was extended by Bressan [10]. Uniqueness and Lipschitz continuous
dependence of solutions to scalar conservation laws (in many space variables) were first
obtained by Kruzkov using the special entropies. The first proof of uniqueness for systems
was obtained in 1996 by Bressan, Crasta, and Piccoli [11]. The proof was much simplified
using the Bressan—Liu—Yang functionals; see [12].

In this section we give some basic preliminaries about systems of conservation laws.

Conservation Laws

A system of conservation laws in one space dimension can be written in the form
u;+ f(u)y =0, (2.1)

where u : [0,+00[ xR — R”" is the “conserved quantity” and f : R" — R” is the flux.
Indeed, if we integrate (2.1) on an arbitrary space interval [a, b], then

d b b
Z/ u(t,x)dx = —/ fu(t,x))xdx = f(u(t,a)) — f(u(t,b)),

5
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and so the number of u in any interval [a,b] varies according to the quantity of u entering
and exiting at x =a and x = b.

We always assume f to be smooth; thus, if u is a smooth function, then (2.1) can be
rewritten in the quasi-linear form

u;+Awuy, =0, 2.2)

where A(u) is the Jacobian matrix of f at u.

Definition 2.1. The system (2.2) is said to be hyperbolic if, for every u € R", all the
eigenvalues of the matrix A(u) are real. Moreover, (2.2) is said to be strictly hyperbolic if
it is hyperbolic and if, for every u € R", the eigenvalues of the matrix A(u) are all distinct.

Remark 2.1.1. Itis clear that (2.1) and (2.2) are completely equivalent for smooth solutions.
If instead u has a jump, the quasi-linear equation (2.2) is in general not well defined, since
there is a product of a discontinuous function A(u) with a Dirac measure. A notion of
solution in the case of discontinuous functions is given in this section.

If n =1 so u takes values in R and f : R — R, then (2.1) is a single equation. In this
case we say that (2.1) is a scalar equation. If n > 1, then (2.1) is a system of n equations of
conservation laws. Indeed if u = (uy,...,u,)and f =(f1,..., fu), then (2.1) can be written

in the form
Oru1 +0x f1(u) =0,

Orup + 0y fn(u) =0.

Weak Solutions

A standard fact for the nonlinear system (2.1) is that classical solutions may not exist for
some positive time, even if the initial datum is smooth. Let us consider, for example, the
scalar Burgers equation

u;+uu, =0,

with the initial condition u(0,x) = ug(x) = #

Cauchy problem must be constant along the lines

t
t x4+ ——).
( + 1+x2>

For ¢ sufficiently small (z < \/%) these lines do not intersect together, and so the solution is

One shows that the solution u(z, x) to this

classical, but at t = % the characteristics intersect together and a classical solution, i.e.,

differentiable solution, cannot exist for ¢ > \/%; see Figure 2.1.

Hence we must deal with weak solutions.

Definition 2.2. Fix ug € L}OC(R;R”) and T > 0. A functionu : [0,T] x R - R” is a weak
solution to the Cauchy problem

{ u+ fu)y =0,

u(0,x) = ug(x) @3)
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Figure 2.1. The characteristic curves for the Burgers equation in the (t,x)-plane.

if u is continuous as a function from [0,T] into L }OC and if, for every C' function yr with

compact support contained in the set ]| — oo, T[ xR, it holds that

T
/ /I;{uw//,+f(u)-lﬁx}dxdt+/l;uo(x)'¢/(0,x)dx=0. 2.4)
0

A weak solution u to (2.3) satisfies
u(0,x) =up(x) forae. x eR.

This is a consequence of the fact that u is continuous as a function from [0,7] to L }OC and
of (2.4). We summarize further properties of weak solutions.

Definition 2.3. A function u = u(t,x) has an approximate jump discontinuity at the point
(1,&) if there exist vectors u™,ut € R" and A € R such that

1 r r
lim —/ / |lu(t +t,&E+x)—U(t,x)||dxdt =0,
—rJ—r

r—0t r2
where
u-, ifx<Aat
U(t,x):= oo ’
(. x) { ut,  ifx > At

The function U is called a shock travelling wave.

(2.5)

Theorem 2.4. Consider a bounded weak solution u to (2.1) with an approximate jump
discontinuity at (t,£). Then

AuT—uT)= f) - f@). (2.6)

A proof can be found in [10].
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Equation (2.6), called the Rankine—Hugoniot condition, gives a condition on discon-
tinuities of weak solutions of (2.1) relating the right and left states with the “speed” A of the
“shock.” In the scalar case (2.6) is a single equation and, for arbitrary u~ # u™, we have

_ fwh)—fu)

A
ut —u—

For an n x n system of conservation laws, (2.6) is a system of n scalar equations.
It is known that weak solutions are in general not unique: let uo be the function

defined by
1, ifx>0,
ol = [ 0, ifx<0.

For every 0 < o < 1, the function u,, : [0,400[ xR — R defined by

0, ifx< "’2—',

Uu(t,x) =1 o, if% <x< B

. (14a)t
l, 1fx2—2—

is a weak solution to the Burgers equation for all values of «. Therefore the notion of
weak solution must be supplemented with admissibility conditions, motivated by physical
considerations.

Entropy Admissible Solutions

A first admissibility criterion, coming from physical considerations (see Dafermos [21]), is
that of the entropy admissibility condition.

Definition 2.5. A C! function n : R" — R is an entropy for (2.1) if it is convex and there
exists a C! function q : R" — R such that

Dn(u)- Df (u) = Dg(u) 2.7

Sfor every u € R". The function q is said to be an entropy flux for n. The pair (n,q) is said
to be an entropy—entropy flux pair for (2.1).

Definition 2.6. A weak solution u = u(t,x) to the Cauchy problem

ur+ f(u)x =0,
[ u(0,x) = uo(x) (2.8)

is said to be entropy admissible if, for every C' function ¢ > 0 with compact support in
[0, T[xR and for every entropy—entropy flux pair (n,q), it holds that

&
/0 /R {n(u)d: +q(u)p.}dxdr > 0. (2.9)

Existence of entropies is in general not granted. However, in the scalar case there is
a family of convex entropies introduced first by Kruzkov.



