How to design | ana
develop COBOL program

A practical approach to desi_gn,' coding, testing,
and documentation

Paul Noll
Mike Murach

How to design and
develop COBOL programs

A practical approach to design, coding, testing,
and documentation

Paul Noll
Mike Murach

Mike Murach & Associates, Inc.
4222 West Alamos, Suite 101
Fresno, California 93711

(209) 275-3335

A

Development Team

Originator/author: Paul Noll
Director/writer: Mike Murach
Writer/editor: Anne Prince
Production director: Steve Ehlers

Cover design: Michael Rogondino

Related program development products

A handbook called The COBOL Programmer’s Handbook

Case Studies for How to Design and Develop COBOL Programs

Instructor’s Guide for How to Design and Develop COBOL Programs

LISTMODS software for preparing structure listings from COBOL source
programs

Related system development products
A textbook called How to Design and Develop Business Systems

Case Studies for How to Design and Develop Business Systems
Instructor’s Guide for How to Design and Develop Business Systems

Related COBOL products
A textbook called Structured ANS COBOL. Part 1
A textbook called Structured ANS COBOL. Part 2

A textbook called Report Writer
Advisor’s Guide for Structured ANS COBOI

© 1985, Mike Murach & Associates, Inc.

All rights reserved.

Printed in the United States of America

2019 18 1716 1514 13 1211 10 9 876 54 32 1
Library of Congress Catalog Card Number: 84-61556

ISBN: 0-911625-20-8

Contents

Preface 1

Section 1 Introduction

Chapter 1 Has structured programming failed? 8
Chapter 2~ Why structured programming has failed 25
Chapter 3~ How to make sure that structured programming succeeds in your

shop 38

Section 2 Procedures and Techniques

Chapter 4 A practical procedure for developing COBOL programs 58
Chapter 5 How to get complete program specifications 67
Chapter 6 How to use related programs, COPY members, and subprograms 79
Chapter 7 How to design a program using top-down design 92
Chapter 8 How to plan the modules of a program 179
Chapter 9 How to code a structured program in COBOL 221
Chapter 10 How to test a structured program 271
Chapter 11 How to document a structured program 294

Section 3 Interactive COBOL Considerations

Chapter 12 An introduction to program development for interactive programs 304
Chapter 13 How to design and code interactive programs that use internal
screen definitions 333

Chapter 14 How to design and code interactive programs using CICS on an IBM
mainframe 368

iv

Section 4 Related Subjects

Chapter 15 How the 198X COBOL standards will affect your development
methods

Chapter 16 What you should know about other development methods

Chapter 17 What you should know about structured walkthroughs

Chapter 18 What you should know about programming teams

Chapter 19 What you should know about development support libraries

Chapter 20 How your system development method can affect program
development

Chapter 21 How to manage programmers and programming projects

Appendixes

A The documentation for an edit program: specifications, structure chart, and
COBOL listing

B Program specifications for an edit program that you should be able to develop
in one day using the methods presented in this book

Index

410
420
433
451
460

469
490

505

523

529

Preface

In 1977, we published a book by Paul Noll called Structured
Programming for the COBOL Programmer. It presented a complete
method of program development that included techniques for top-down
design, structured coding, and top-down testing. Back then, we felt that
this method would improve any programmer’s productivity. We also felt
that this method would help programmers improve the reliability and
maintainability of their programs.

Since 1977, more than 35,000 people have bought this book in more
than 12,000 different companies throughout the country and the world.
In addition, as an independent consultant and trainer, Paul has taught his
development method to more than 5,000 programmers in 100 different
companies. Based on a survey that we conducted earlier this year, we
estimate that Paul’s complete method is now used in more than 3,000
companies. And ideas taken from his method are used in thousands of
other companies.

Since 1978, when we installed our first computer system at Mike
Murach & Associates, we have used the method presented in Structured
Programming in our own COBOL shop. We have used it with four
different kinds of compilers on four different kinds of computer systems.
We have developed both batch and interactive systems with it. We have
developed about one million lines of COBOL code with it. We have
developed complete operational systems for four different companies with
it. And now, we can say from experience that the program-development
method in Structured Programming works...and it works better than any
other method we’'ve used, read about, or heard about.

2

Preface

What this book does

This book is a revised edition of Structured Programming for the COBOL
Programmer. Its purpose is to show you how to improve the quality of
your programs as well as your programming productivity. Whether or not
you are using structured development techniques right now, we believe
this book will show you a better way to develop COBOL programs.

If you check the contents of this book, you can see that it consists of
four sections. In general, the first section presents background
information that is designed to convince you that our method is the right
one for you. The next two sections present the procedures and techniques
that make up the method. And the fourth section presents related subjects
that can help you make more effective use of the development method.

In section 1, you will find three chapters that present the status of
structured programming as we see it today. In our opinion, structured
programming has failed in most COBOL shops, and to a large extent it
has failed due to the bewildering array of techniques and methods that
have been promoted under the name of “structured programming.” But
that doesn’t mean it has to fail in your shop. In fact, chapter 3 presents
eight principles that can lead you to dramatic improvements in
programmer productivity and program quality.

In section 2, you will learn about the nine-task procedure for
program development that we recommend for any COBOL shop. Chapter
4 presents the nine-task procedure. And chapters 5 through 11 present the
techniques you should use for each of the tasks in the procedure. To keep
this section manageable, the examples used to present the techniques are
all taken from batch programs.

Then, in section 3, you’ll learn how to apply the procedures and
techniques of section 2 to interactive programs. You’'ll also learn how
interactive compilers can force you to modify the standards recommended
in section 2. When you finish this section, you should be able to apply the
method of this book to interactive programs using any COBOL compiler.

Finally, in section 4, you’ll find seven chapters on subjects related to
the method of this book. For instance, chapter 15 shows you how the
198X COBOL standards may affect the way you develop programs. And
chapter 16 presents other common methods of structured program
development so you can compare them with the one in this book. Overall,
this section presents many ideas that you can use in conjunction with the
development techniques recommended in this book.

For those of you who read the first edition of this book, I think you'll
find four major areas of improvement in this second edition. First, the
development method of the first edition is refined and improved; it is
presented in section 2 of this book. Second, the interactive material in
section 3 of this book is new material that we’ve had dozens of requests
for over the last few years. Third, section 4 presents much new material
that gives you more perspective on program development. And, fourth,
throughout this book, we’ve made more of an effort to explain why our

Preface

method is more effective than some of the other methods you are likely to
be using. As a result, we expect this edition of the book to be more
convincing than the first edition was.

As you can see from the contents, this is a lengthy book. But it
doesn’t have to be overwhelming. Keep in mind, then, that section 2
(chapters 4 through 11) presents the essential method of the book, while
the other chapters only provide supporting information. As a result, you
can skim or skip section 1 (chapters 1 through 3). You don’t have to read
section 3 until you're ready to apply the techniques of section 2 to
interactive programs. And you only have to read the chapters in section 4
if they become of interest to you. If you read the book with this
perspective, I think you’ll find it quite manageable.

How we developed this book

When we wrote the first edition of this book, Paul Noll was the originator
of the material and I was its writer and editor. Unfortunately, though,
Paul Noll wasn’t able to help with the development of this second edition
of the book because he is teaching at Academia Sinica in Chengdu,
China. However, Paul and I did meet for three days last February to
compare notes and to agree on what the revision would contain.

So you're not confused when you read this book, I want you to
realize now that Paul and I don’t agree on everything related to the
development of COBOL programs. Yes, we agree on the essential
techniques of program design, structured coding, and top-down testing,
but we don’t agree on some of the related techniques like the use of HIPO
diagrams and walkthroughs. This is understandable because Paul’s
experience has been primarily in large businesses and mine has been in
small businesses. Throughout this book, then, I'll try to make clear who
believes in what so you can draw your own conclusions. Remember,
though, that I'm writing the book, and I'm trying to do my best to
present both Paul’s opinion and my opinion whenever they differ.

Who this book is for

At the present time, there are thousands of COBOL programmers who
are not writing structured programs. And this is a preposterous waste of
programming talent. So if you're one of these programmers, this book is
for you.

But this is also for those programmers who are writing “structured”
programs, but who aren’t writing reliable programs that are easy to read
and maintain and who aren’t producing their programs at a professional
rate of productivity. Unfortunately, as you’ll learn in section 1, we feel
that these programmers represent the majority of the programmers
working today.

4

Preface

If you are a programming manager, you probably have more
personnel problems than you care to think about. So this book is for you
too. If you enforce the method in this book throughout your shop, we
believe you’ll experience dramatic improvements in programmer
productivity and program quality in your shop. So a year from now, you
should have fewer personnel problems than you have today.

If you read the first edition of this book, we think you’ll find that it’s
worth reading this one too. In brief, this book presents improvements to
the method of the first edition; it shows you how to apply the method to
interactive programs; and it gives you more background and perspective
on program development.

Why this book is effective

We think this book is effective for five main reasons. First, Paul Noll is a
practical man who emphasized the practical side of program development
in the first edition of this book. And that’s what we've tried to do in the
second edition too. So this is not a book of theory; it is a book of proven
techniques.

Second, Paul Noll has presented the method of this book to hundreds
of programmers over the last ten years. Since 1978 Paul has been an
independent consultant and trainer who has taught more than 5000
programmers how to program more effectively. Before that, he was the
director of technical training for Pacific Telephone in San Francisco at
which time he developed more than 50 courses for a staff of more than
120 programmers. As a result of these experiences, Paul has been able to
refine his educational approach and to increase its effectiveness. And
we've used Paul’s approach in this book.

Third, this book was developed with the belief that a method should
never be presented without showing its application. In contrast to other
books, then, this book presents complete and practical solutions for actual
programming problems. Once you see how the development method is
applied to these problems, you can see how it can improve your
effectiveness.

Fourth, the fact that this book presents structured programming in
the context of COBOL increases its effectiveness. In contrast to the many
books that present structured programming without relating it to a
specific language, you won'’t be told how to design a program without
seeing how the design relates to the COBOL code. You won't learn what
the three valid coding structures are without seeing them coded in
COBOL. You won’t be told what a program stub is without seeing several
in COBOL. And you’ll see all of the structured coding techniques in
COBOL.

Finally, this book contains dozens of illustrations taken from all
phases of structured programming...more than twice as many as there
were in the first edition of the book. You'll see structure charts for the
four types of batch programs common to most business systems. You'll see

Preface

three different structure charts for the same interactive program as it’s
implemented using three different COBOL compilers. You'll see
pseudocode for the key modules of these programs. You'll see many
examples of COBOL coding. You'll see examples of other design and
coding methods. And you’ll see much more. In our opinion, these
illustrations, more than any other factor, determine whether or not a
methods course is effective...and they are the missing ingredient in other
books on program development.

Some related products

If you want to run a course on the program-development method of this
book, we offer a complete training package. It consists of this book, Case
Studies that go with this book, and an Instructor’s Guide that makes it
easy for an instructor to administer a course using the case studies and
text. This package not only teaches a student how to apply modern
programming methods to the development of COBOL programs, but it
also motivates experienced programmers to use these methods.

If you decide to adopt the method of this book throughout your shop,
we offer a reference book called The COBOL Programmer’s Handbook.
This handbook presents standards for program development that conform
to the recommendations made in this textbook. It also presents seven
model programs, four batch and three interactive, that you can use as
models for the development of your own programs. In addition, the
Handbook can be used as a training aid in a course on program
development.

If you're concerned about system design and development as well as
program development, we offer a training package for system
development too. It is called How to Design and Develop Business
Systems. And it too consists of text, case studies, and advisor’s guide. If
you get this package, vou will see that its methods for designing and
developing business systems complement this book’s methods for designing
and developing COBOL programs.

Finally, if you train programmers in COBOL, we offer a complete
package in Structured ANS COBOL that supports the development
method presented in this book. It consists of three textbooks and an
advisor’s guide. If you get this package, you will see that it is closely
coordinated with our package for designing and developing COBOL
programs. So your COBOL students will learn to develop programs the
right way from the start.

Conclusion
Quite frankly, we were disappointed with the sales of the first edition of

this book even though we sold more than 35,000 copies of it. In fact,
because the need for a better method of program development is so great,

6

Preface

we see our experiences with the first edition as a failure in marketing. We
were even more disappointed to discover through a survey that less than
50 percent of the people who bought the first edition actually adopted the
method it presented. And we know from 17 years in the publishing
business that it’s much easier to sell a book on a specific skill like CICS or
TSO than it is to sell a book on a method for developing systems or
programs. It seems, in fact, that most programmers will do everything
they can to get the technical training they need, but they won’t take the
time to get the methods training that is critical to their effectiveness.

As you can see, though, that hasn’t stopped us from revising the first
edition of this book. I guess we just felt compelled to revise it because
we’ve learned so much in the last eight years. Maybe this time the book
will be more convincing. And certainly the development method is more
complete than it was in the first edition. Maybe this time more people
will join us in reaching the high levels of programming fulfillment that
are possible when you use an effective method of program development.

If you have any comments or questions about the method or this
book, we’d love to hear from you. So please use the comment form in the
back of this book. And thanks for being our customer.

Mike Murach
Fresno, California
October, 1984

Section

Introduction

This section is intended to give you some perspective on struc-
tured programming and the structured-programming move-
ment. Specifically, this section tries to answer three questions
that are important to any programmer or programming group:
Has structured programming failed? If it has failed, why did it
fail? And what can you do to make sure structured program-
ming doesn’t fail in your shop?

If by chance you’re not interested in this introductory infor-
mation, you can skip this section. In this case, you can go on to
sections 2 and 3, which present the procedures and techniques
vou should use if you want structured programming to succeed
in your shop. Section 2 presents the procedures and techniques
vou should use when you develop any business program using
batch programs as examples. Section 3 shows you how to apply
these procedures and techniques to the development of interac-
tive programs.

Chapter 1

Has structured programming failed?

By the mid-1970s, it was clear that most
‘ companies that had computers were not doing
an adequate job of developing COBOL
programs. A study done in 1975 showed that
the average COBOL programmer produced
only 10 to 12 lines of tested code per day. In
addition, the programs in a typical COBOL
\ shop were generally unreliable, often requiring
emergency repairs in order to get basic jobs

done. And each year the cost of maintaining old programs went up so it
wasn’t unusual for a company to spend more than half of its
programming budget on program maintenance rather than on new
program development.

With these problems, it was natural that the users of most computer
systems were something less than satisfied. In a typical shop, more than
half the new programs were delivered behind schedule and over budget.
And if a user made a request for a new program, he was likely to wait
many months before the programming department even started it.

Into this situation, growing more desperate each day, came the
promise of “structured programming.” If we were to change our methods
of developing programs, we were told, we could make dramatic
improvements in both programmer productivity and program quality.
Then, the computer users would be satisfied because programs would be
delivered on time and within budget. And the programming backlog, the
jobs waiting to be done by the programming department, would
eventually be reduced to reasonable proportions.

By the late 1970s, the structured programming movement had gained
considerable momentum. For several years, it was one of the primary

Has structured programming failed?

subjects of conversation and training. Countless articles and several books
were published on the subject. Almost all COBOL training took on a
structured look. And most COBOL shops made a serious effort to “get
structured.”

But now it’s the mid-1980s, and you don’t hear much about
structured programming anymore. If you read the major trade magazines,
you rarely find an article on structured programming. Only an occasional
book is published on the subject. And, overall, the subject seems quite
dead. Microcomputers, networking, and fourth-generation languages seem
to be far more important to the average data processing manager.

The questions we have to ask, then, are these: Has structured
programming fulfilled its promise? Is that why the subject is dead? Or,
has structured programming failed? After the articles were published,
after the seminars were given, after the development standards were
revised...did things improve or did most COBOL shops simply replace
one set of ineffective development standards with a new set?

Before I try to answer these questions, I'm going to review the major
changes in program development from 1965 to the present. Next, I'll
point out the shortcomings of unstructured development methods and the
promised benefits of structured methods. Then, I'll present the effect of
the structured programming movement on programmer productivity and
program quality. Last, I'll summarize the results of a COBOL survey we
recently conducted. When you complete this chapter, I think you’ll be
able to decide for yourself whether or not structured programming has
failed. Keep in mind, though, that the important question is not so much
whether structured programming has failed, but whether structured
programming has failed in your shop.

Changes in COBOL program development
from 1965 to the present

Although the COBOL language was developed in the late 1950s, it wasn’t
used much until third-generation computer systems were introduced in
the mid-1960s. As a result, the history of COBOL programming is a short
one. The significant history runs from 1965 to the present.

In general, you can divide COBOL programming into three styles or
eras. First, a typical shop in 1965 simply adapted assembler language
techniques to the development of COBOL programs. The result was what
I call GOTO programming. Second, in an attempt to improve
programmer productivity and program quality, a typical COBOL shop
experimented with modular programming. Finally, in an attempt to
improve on modular programming, a typical COBOL shop converted to
structured programming.

More important than this general history, though, is the history of
program development in each COBOL shop. For instance, a well-run
COBOL shop may have started with GOTO programming in 1965,
moved to modular programming by 1970, and established structured

10

Chapter 1

programming by 1975. In contrast, a poorly-run shop may still be
developing programs using GOTO programming.

If you've been in the data processing business for more than a short
time, you probably know what I'm talking about when I mention GOTO,
modular, and structured programming. But in case you don’t, here’s a
brief introduction to each of these programming styles. Once you
understand them, you’ll have a better idea of why the promise of
structured programming was so alluring.

GOTO programming In the GOTO era of program development, a
programmer designed a program by developing a detailed program
flowchart. Figure 1-1, for example, is a flowchart for a simple file-to-
printer program that prepares a wage report. As you can see, the
flowchart goes into so much logical detail that the programmer has used a
flowcharting form to make it somewhat easier to follow. If you work in a
well-run COBOL shop, it may be hard for you to believe that people ever
created flowcharts like this. But ten years ago, they were quite common.

After a programmer completed a detailed flowchart, he began coding
the program using the flowchart as a guide. When he reached a decision
block like block JI, he continued with the processing for one of the
conditions and coded the routines for the other conditions later on. After
all routines were coded, a good programmer checked the code for
completeness using the flowchart as a reference.

One of the characteristics of traditional COBOL coding was the
extensive use of GOTO statements, because at least one GOTO was used
for every decision block in a flowchart. To code the wage-report program
based on the flowchart in figure 1-1, for example, a programmer would
probably have used a dozen or more GOTO statements. But it is this
branching from one paragraph to another within a COBOL program that
makes the code difficult to read and modify. In actual practice, a
traditional COBOL program that used 1000 different verbs in the
Procedure Division was likely to use anywhere from 100 to 250 GOTO
statements, so the code was extremely difficult to follow.

Modular programming As you can see in figure 1-1, a flowchart from
the GOTO era had no identifiable structure. As a result, it was difficult
to create, read, and maintain. And the resulting program was difficult to
code, test, debug, and maintain. By the late 1960s, then, programmers in
the better COBOL shops began to think in terms of modular
programming.

The idea of modular programming was to divide a program into a
number of independent modules—one mainline module and one or more
subroutine modules. By so doing, the logic of a program was simplified,
which in turn simplified coding and testing.

Has structured programming failed? 1

Printad in USA.
GX20-8021-2 UMM 060
EM Flowcharting Worksheet Reprinted 12/68
Prog ._MM Program No.: Date: 8875 Page: 1
Chart I1D:___ Chart Name: Wage Report Preparation Progrom Name:
—A2— L —— A3 - 4+ ——— f—AQ—J»————' CAsS—+-——
|]
Add 1 T ‘ |
to + =
LINE-COUNT " |
_______ ISR, P |
= R2 — b o — BS— + — —
Move Error oSN : Compa ; & Mc'we [_ _‘i
Message to O<N mployee |
Outputa\;ork 4—‘,6‘9'02” NVS——J Totals to ¥ 1
Area | Old:New. Output Area [
e B SN |] S|
O=N
~c2 -1 ~C3- —ca—d4 - — C5—+———
: |Add Empl : !
Totals to + 1
Final Totals ‘ ;
Y Lo s
=04 — 4 — — — 05 —4+——4
Set Employee) :
Totals to + +
Zero !]
S5 e e

t
Move |
IN |
Empioes e ounr ' |
Number to Set SPACE- T T
Work Area ICONTROL to !

e ————— —_—— = —— e e —d ————
T F1 T
A =F)_ 4 __ - ~F3— e~ — 7 U — ~F5 —+——— 18
£ oveBelectsd e | ! ; Add 2 to ! . g
g Input Data {————- - number, + + i LINE-COUNT; 1 : §
' fto Output A name,and | ! i Set SPACE- , S
= jobclass | ! ICONTROLt02 I 1 e
s —— 1 | P RO | §.
el a
:i GS. A .E

Move Final
Totals to
Output Area

H5 —
Print
n Final
Total
Line
r—J5 - 1T _-'l
|
|
Stop 4
b e
K5 — + — —
et
| |
+ +
\ I
| |
|

Figure 1-1 A program flowchart for a program that prepares a wage report

12

Chapter 1

Figure 1-2, for example, is a flowchart for the mainline module of
the same wage-report program that is flowcharted in figure 1-1. This
module indicates all the major processing modules as well as the logical
decisions required to direct the program to these modules. As you can see,
each module has a stripe at the top of the symbol to indicate the name of
the module. So the wage-report program consists of the mainline module
plus eight other modules named HOUSEKEEPING, READ-RECORD,
and so on.

After a programmer completed the flowchart for the mainline
module, she flowcharted each of the subroutine modules, or at least the
more complex modules. To continue the concept of modularity, she might
divide a subroutine module into additional, more specific, modules,
depending on the length and complexity of the module. Since the idea
was to make each programming module manageable, the programmer
tried to keep each module between 50 and 200 statements in length.

To code a modular program, the programmer started with the
mainline module. Next, she coded each of the subroutine modules. In
contrast to GOTO programming, then, the modular program was coded
in a somewhat predictable sequence.

By using modules, the COBOL programmer cut down on her use of
GOTO statements. Instead, to control the execution of subroutine
modules, she used PERFORM statements. For instance, the code in figure
1-3 represents the mainline module flowcharted in figure 1-2. Notice that
all the PERFORM statements are written with the THRU EXIT clause so
the mainline routine won’t have to be changed no matter how many
paragraphs the subroutines contain. Notice also, however, that GOTO
statements are still used extensively. In this 22-statement routine, five
GOTO statements are used.

Structured programming When structured programming started to
become popular in the mid-1970s, it was somewhat revolutionary. It said
throw away your flowcharts and your GOTOs and do things differently.
Because many people were aware of the problems they experienced using
unstructured techniques, they were ready to make this revolutionary
change. Then, when success stories were published showing the dramatic
improvements possible when you used structured programming, more
people became convinced that they should make this change to new
methods. Eventually, so many people had changed their methods, were in
the process of changing them, or were considering changing them, that it
was clear structured programming was here to stay. In fact, so many
people changed that it was fair to describe the change as an industry-wide
movement, the structured programming movement.

When you develop programs using structured programming, you no
longer use a program flowchart (although some people tried). Instead,
vou design a program using a design document like a structure chart, a

