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Preface

An accurate and consistent treatment of electron correlation is one of the great chal-
lenges currently confronting electronic structure calculations in theoretical chemistry,
atomic and molecular physics, and condensed matter theory. Such a treatment is crit-
ical for many aspects of the ab initio determination of atomic and molecular structure.
In these problems, the reference point from which degree of correlation is judged is
the Hartree-Fock limit. By convention Hartree-Fock is said to have no correlation
since it is a mean field, single particle description. In contrast, the goal of electronic
structure theory is the solution of the non-relativistic, Born-Oppenheimer (clamped
nuclei) Schrodinger equation. To this end, a number of “post-Hartree-Fock” methods
have been developed, i.e. methods that go beyond the mean-field approximation, yet
retain the simple molecular-orbital picture. Importantly, these methods add many-
body correlation at various levels of approximation. The success of Hartree-Fock
and post-Hartree-Fock methods for treating electronic structure benefits consider-
ably from cancellation of errors between two or more computations in the calculation
of observables. In many other cases, in particular in the calculation of excited states
and classical barrier heights, these errors often do not cancel. Sometimes quantita-
tive accuracy can only be obtained by including vast numbers of terms in various
expansions, but such an approach is typically limited in its applicability to small
systems.

Post-Hartree-Fock methods fall mainly into two categories: those based on config-
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vi Preface

uration interaction, which expand the wave function in primitive basis functions and
determinants (configurations), and those based on many-body perturbation theory
which treat electron-correlation as a perturbation. In both cases, correlation correc-
tions usually begin from a Hartree-Fock wave function. Other important formalisms
that treat the correlation energy are density functional theory and electron propaga-
tor methods. The former approach is rapidly gaining momentum and is useful in a
variety of applications.

Our aim in this volume is to present the fundamental background and current
status of the application of Monte Carlo to the determination of correlation in elec-
tronic structure. We shall use the term quantum Monte Carlo (QMC) to refer to
methods that directly solve the Schrodinger equation, as contrasted with variational
Monte Carlo (VMC) methods that evaluate quantum mechanical expectation values
by Monte Carlo procedures. QMC differs from post-Hartree-Fock approaches in that
it is a fully correlated method from the outset, rather than building on a mean-field
approach. We also distinguish QMC here from a large class of other Monte Carlo
methods used in the treatment of quantum problems, often also referred to as QMC
in the literature. The distinguishing feature of all these QMC methods is their es-
sentially exact nature, and the lack of any special attention that needs to be paid to
correlation per se. Their differences lie in the class of problems they were designed
to treat. Among these other methods we mention Hubbard-Stratanovich approaches
designed for lattice models of strongly interacting electrons, and path integral Monte
Carlo which is most often encountered in simulations of condensed matter. Both
of these latter methods are finite-temperature approaches, important for treating
macroscopic systems.

Though the QMC we discuss here also has its roots in condensed matter physics

and statistical mechanics, it is a zero-temperature or ground-state approach. As such
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it is the most appropriate starting point for treating electronic structure by Monte
Carlo. Nevertheless, work on adapting other QMC approaches to electronic structure,
as well as to adapting the kinds of QMC we discuss here to other realms are currently
in progress.

All QMC methods are presently computationally demanding. Nevertheless, as
experimental advances push the limits of accuracy required of computational ap-
proaches, and as computers continue to achieve greater speed, emphasis must in-
creasingly be placed on the simplicity, consistency and accuracy of a method. QMC
holds high promise here. Moreover, Monte Carlo methods are the most natural for
massively parallel computation, ultimately providing a great advantage.

The subject matter of this book is divided conceptually into two parts. The
first five chapters present the basic concepts in detail. The latter part of the book,
chapters 6-9, covers important extensions of these basic methods. Chapter 1 pro-
vides background on random numbers, probability distributions, integral estimation,
and simulation of simple differential equations. Those readers already familiar with
statistics and the use of random numbers may wish to skip this chapter. Chapter 2
treats VMC, describing methods to evaluate the energy and expectation values de-
rived from variational trial wave functions. The power of VMC is that Monte Carlo
integration methods enable one to exploit furnctional forms that are not analytically
integrable for many-electron systems. Such forms include those due to Hylleraas as
well as more recent forms, all of which depend explicitly on interelectronic distances.
In addition, concepts central to both VMC and QMC, such as importance sampling
and optimization are introduced here. QMC solution of the Schrédinger equation is
the topic of Ch. 3. The focus is on the use of Green’s functions to sample the exact
ground state energy. Chapter 4 continues the discussion of QMC with consideration

of aspects that must be addressed to treat Fermion systems. In Ch. 5 we discuss the
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important issue of the choice of trial function. Though QMC methods are not based
on trial functions or basis set expansions, unlike many other ab initio approaches,
these functions do play a central role in importance sampling and in the fixed-node
method.

These chapters provide the necessary information and methods to evaluate ground
state energies of atoms and molecules. The remainder of the book is dedicated to a
number of extensions that are necessary for important chemical applications. The de-
termination of excited-states is treated in Ch. 6, while Ch. 7 describes how to evaluate
single-state properties, e.g., dipole and quadrupole moments, and multistate proper-
ties, such as the transition dipole moment. Chapter 8 discusses the determination of
equilibrium geometries and interaction potentials by means of explicit energy differ-
ences and through calculation of energy gradients. Finally, in Ch. 9 we explore new
directions being developed which allow QMC to more easily treat systems containing
heavy atoms.

We have organized the subject matter with the intent that it may be understood
at the entering graduate student level while also being of interest to researchers fa-
miliar with the topic. A knowledge of quantum mechanics is required, and some
knowledge of molecular electronic structure theory is helpful. For senior undergradu-
ate and graduate level courses, the material in the first four chapters is fundamental.
If computational projects are to be undertaken, then Ch. 5 should also prove espe-
cially useful. The final chapters may be treated as special topics on the basis of
time and interest. For those already familiar with electronic structure theory and
Monte Carlo methods in general, chapters 2 through 5 will provide background and
breadth, whereas the final chapters will be of more topical interest. To facilitate
course work and research projects, we have provided explicit algorithms, exercises,

suggested reading, and references at the end of each chapter. The algorithms are writ-
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ten using FORTRAN-like syntax; however we have often deviated from FORTRAN
in the interests of readability and brevity. In addition, a number of supplementary
topics are addressed in the appendices. Conversion factors to and from atomic units
are given in Appendix A. Details of the evaluation of determinantal trial functions
are discussed in Appendix B. In Appendix C we provide a listing of a FORTRANT77
implementation of diffusion Monte Carlo without importance sampling, which can be
used to treat one-dimensional potentials. For those wishing to continue the study of
QMC, the electronic structure program QuantumMagiC, developed at the University
of California at Berkeley, may be obtained from the Quantum Chemistry Program
Exchange (QCPE) at Indiana University, Bloomington, IN 47405 USA. Finally, a
comprehensive topical listing of all references used in the text is given in Appendix
D.

We wish to thank the many people who have provided input and criticism during
the writing of this manuscript. In particular we wish to thank Professor James B. An-
derson, Dr. Dario Bressanini, Professor David M. Ceperley, Dr. William Glauser,
Professor Harvey Gould, Professor Jamin Adeola Odutola, Dr. Cyrus Umrigar, and
WAL’s graduate students: Willard Brown, Mark Goodwin, Eric Johnson and Maria
Soto. Any mistakes or omissions, however, are entirely our own. We also acknowledge
the support of the Department of Energy, the Office of Naval Research, and the Su-
perComputer Group of Fujitsu America, Inc. for their support during the writing and
preparation of the manuscript. This manuscript was typeset with the IATRX Version

2.09 document preparation system and the Gnuplot Version 2.0 plotting package.
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Chapter 1

Introduction to Monte Carlo

Methods

Monte Carlo methods are a class of techniques that can be used to simulate the
behavior of a physical or mathematical system. They are distinguished from other
simulation methods such as molecular dynamics, by being stochastic, that is, non-
deterministic in some manner. This stochastic behavior in Monte Carlo methods
generally results from the use of random number sequences. Although it might not
be surprising that such an analysis can be used to model random processes, Monte
Carlo methods are capable of much more. A classic use is for the evaluation of
definite integrals, particularly multidimensional integrals with complicated boundary
conditions. The use to which we will apply Monte Carlo is the solution of the well-

known partial differential equation, the Schrodinger equation.

Monte Carlo methods are frequently applied in the study of systems with a large
number of strongly coupled degrees of freedom. Examples include liquids, disordered
materials, and strongly coupled solids. Unlike ideal gases or perfectly ordered crystals,
these systems do not simplify readily. The many degrees of freedom present are not
separable, making a simulation method, such molecular dynamics or Monte Carlo,

a wise choice. Furthermore, use of Monte Carlo is advantageous for evaluating high
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2 Chapter 1 / Introduction to Monte Carlo Methods

dimensional integrals, where grid methods become inefficient due to the rapid increase
of the number of grid points with dimensionality. Monte Carlo also can be used to
simulate many classes of equations that are difficult to solve by standard analytical
and numerical methods.

In this chapter we introduce various aspects of statistics and simulation germane
to the Monte Carlo solution of the Schrodinger equation. We begin with a discussion
of random and pseudorandom numbers in Sec. 1.1. We then present the essentials
of Monte Carlo sampling (in Sec. 1.2), integration (in Sec. 1.3), and simulation (in
Sec. 1.4). We attempt to discuss only those concepts needed later in the book. Further

details may be found in standard statistics texts.!

1.1 Random Numbers and Statistical Analysis

A loose definition of a random number is a numerical value resulting from a process
or experiment whose value cannot be predetermined by the initial conditions. It is
important to note that the term “random number” is somewhat misleading; a number
is not random, rather it is the relationship between numbers in a set which is random.
Many natural processes display randomness —- from the decay of subatomic particles
to the trajectories of dust particles across the surface of a liquid.

We need to start by defining the concepts and notation used to discuss random
numbers and events. An ezperiment is the process of observing one or a set of physical
properties in a system of interest. The result of an experiment is limited to certain
values or ranges of values of the physical properties. A state is an allowed value of the
set of physical properties of the system. The set of all possible states is the sample
space. A discrete sarnple space contains either a finite or infinite number of distinct
values. A continuous sample space contains an infinite number of continuous values

(such as the positions of particles). A sample point is a single point in sample space.



1.1. Random Numbers and Statistical Analysis 3

A random variable, or variate, is a variable whose value lies within the sample space
with a certain probability distribution. To avoid confusion, we will use upper case
(X,Y, Z) to denote sample points and lower case (z, y, z) to denote variables. This
distinction will become clear with usage. A sequence is a series, in order of occurrence,
of sample points resulting from an experiment. We often will use the set notation

{X;} to denote all the members of a sequence.

1.1.1 Probability density and distribution functions

The most farmiliar uses of random numbers occur in games of chance. This connection
gives the Monte Carlo method its name. Consider a standard six-sided die. If one
tosses an ideal, unbiased die, and records the outcome for a sufficiently large number
of tosses (in principle, an infinite number), each of the six outcomes will occur exactly
one sixth of the time. Even though the outcome of a single toss is random, and thus
unknown beforehand, the probability of each outcome is 1/6. The probability density
function is the function that describes the probabilities of all possible events. The sum
or integral of the probabilities must be unity to insure the proper normalization of
the density function. For a discrete distribution the normalized probability function

p must satisfy,

N
> p(z) =1, (1.1)

i=1
where the sum is over all states, z;. In the case of the die, the normalized probability
density function is p(z;) = 1/6, for each 2; = 1,2,3,4,5,6. For the general one-
dimensional case, the discrete density function can be represented by a histogram as
in Fig. 1.1. This figure illustrates the probabilities of the various sums of two dice.
A simple discrete probability density function, such as the one shown in Fig. 1.1, can
be determined combinatorially by counting the occurrence of each possible event. In

many physical situalions, however, the probability density function must be deter-



