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PREFACE

It has been a dozen years since the first edition of this book saw print;
longer still since that manuscript was first developed. Game theory being a
dynamic field, it is not surprising that so much of the book (in fact,
practically the entire part dealing with n-person games) has required partial
or even complete rewriting.

Through the decade of the seventies, many new developments in the
theory of games saw light. Some of these were merely expansions of
concepts—the nucleolus, nonatomic games, games without side payments—
that had been previously introduced. In other cases, totally new concepts—
many of these dealing with the problem of information, of which more
below—have been developed.

An obvious question is, Why have I introduced none of these new
concepts (the nucleolus excepted)? The answer would be that I have, in
writing this book, at no time attempted to be comprehensive. It has rather
been my desire to give the reader an overview of the mathematical theory
of games, sufficiently complete to enable him or her to understand the
literature—all this while meeting certain standards for brevity. Under the
circumstances, certain topics had to be omitted.

To take a case in point, we might consider the omission of games with
incomplete information (not to be confused with imperfect information
which is discussed to some extent in Chapter I). One of the fundamental
assumptions made throughout this book deals with the principle of complete
information. This principle says, more or less, that players in a game are,
prior to the beginning of play, given the extensive form of the game with all
that this implies. In effect, this means that players are at least aware of the
legal moves at each moment, of the probabilistic distributions involved, and
of the utility which the various outcomes represent, both for themselves and
for their opponents. .

Such an assumption is probably valid for parlor games; in poker, e.g., it
is probably valid to assume that players know the relative ranking of hands
and understand the mechanisms of betting. (It is probably incorrect to
assume that they know the probabilities involved, but this is normally due
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to the mathematical complexities of the situation rather than to a lack of
‘information.) For a real-life situation, however, the assumption seems
somewhat unrealistic. In particular, the problem of determining other
players’ capabilities and utility functions seems extremely difficult—all the
more so as there is frequently an interest in misrepresentation.

In fact, a substantial amount of work has been done along the lines of
weakening—or entirely dispensing with—this assumption. The work is
valuable, both from a mathematical and from an applied standpoint. I have
nevertheless chosen not to discuss that work in the present volume. My
excuse for this is that the work is mathematically quite complex, that it is
not necessary to the development of other topics in the book, and that
someone who has read this book should be quite capable of understanding
the literature in this field. The question is whether this is a valid justifica-
tion; in all candor I realize that others may disagree with me on this matter.

To discuss the changes which have been made: I have, more or less,
taken each of the last three chapters (VIII-X) in the first edition and split it
into two parts. I did this because I felt the amount of research along each
of the six lines concerned (Chapters VIII-XIII of the present edition)
warranted a separate chapter in each case.

On the other hand, certain of the topics that appeared in the first
edition—y-stability and games in partition function form—have been
dropped. I have done this because, in my opinion, not enough work has
been done along these lines since 1968 to warrant their continued inclusion
in the book. This will no doubt upset some of my colleagues; I trust they
will, however, understand the impracticality of an encyclopedic work.

As ever, thanks are in order to certain people and institutions. Both
Michael Maschler and Lloyd Shapley have indirectly contributed to this
book by the stimulating discussions that I have had with them. Mrs. Velva
Power typed all of the new se.tions of the book. Finally. I appreciate the
moral support and encouragement given me by my colleagues at the
United States Naval Postgraduate School during the last few months of
manuscript preparation.
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Chapter |

DEFINITION
OF A GAME

1.1 General Notions

The general idea of a game is that with which we are familiar in the context
of parlor games. Starting from a given point, there is a sequence of personal
moves, at each of which one of the players chooses from among several
possibilities; interspersed among these there may also be chance, or ran-
dom, moves such as throwing a die or shuffling a deck of cards.

Examples of this type of game are chess, in which there are no chance
moves (except for the determination of who shall play first), bridge, in
which chance plays a much greater part, but in which skill is still important,
and roulette, which is entirely a game of chance in which skill plays no
part.

The examples of bridge and chess help to point out another important
element of a game. In fact, in a chess game each player knows every move
that has been made so far, while in bridge a player’s knowledge is usually
very imperfect. Thus, in some games, a player is unable to determine which
of several possible moves has actually been made, either by an opposing
player, or by chance. The practical result of this is that, when a player
makes a move, he does not know the exact position of the game, and must
make his move remembering that there are several possible actual positions.

Finally, at the end of a game, there is normally some payoff to the
players (in the form of money, prestige, or satisfaction) which depends on
the progress of the game. We may think of this as a function which assigns
a payoff to each “terminal position” of the game.

1.2 Games in Extensive Form

In our general idea of a game, therefore, three elements enter: (1) alterna-
tion of moves, which can be either personal or random (chance) moves, (2)
a possible lack of knowledge, and (3) a payoff function.
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We define, first, a topological tree or game tree as a finite collection of
nodes, called vertices, connected by lines, called arcs, so as to form a
connected figure which includes no simple closed curves. Thus it follows
that, given any two vertices A and B, there is a unique sequence of arcs and
nodes joining 4 to B.

From this we obtain

I1.2.1 Definition. Let I be a topological tree with a distinguished vertex
A. We say that a vertex C follows the vertex B-if the sequence of arcs
joining A to C passes through B. We say C follows B immediately if C
follows B and, moreover, there is an arc joining B to C. A vertex X is said
to be terminal if no vertex follows X.

1.2.2 Definition. By an n-person game in extensive form is meant

(a) a topological tree I' with a distinguished vertex A called the
starting point of T';

(B) a function, called the payoff function, which assigns an n-vector to
each terminal vertex of T;

(y) a partition of the nonterminal vertices of I' into n + 1 sets S,
Sy, ..., S,, called the player sets;

(6) a probability distribution, defined at each vertex of S,, among the
immediate followers of this vertex;

(e) for each i=1,...,n, a subpartition of S; into subsets S/, called
information sets, such that two vertices in the same information set have the
same number of immediate followers and no vertex can follow another
vertex in the same information set;

(¢) for each information set S/, an index set I/, together with a 1-1
mapping of the set I/ onto the set of immediate followers of each vertex of
S/.

The elements of a game are seen here: condition a states that there is a
starting point; B gives a payoff function; y divides the moves into chance
moves (S;) and personal moves which correspond to the n players
(S;,...,S,); 8 defines a randomization scheme at each chance move; &
divides a player’s moves into “information sets”: he knows which informa-
tion set he is in, but not which vertex of the information set.

1.2.3 Example. In the game of matching pennies (Figure 1.2.1), player 1
chooses “heads” (H) or “tails” (T). Player 2, not knowing player 1’s choice,
also chooses “heads” or “tails.” If the two choose alike, then player 2 wins
a cent from player 1; otherwise, player 1 wins a cent from 2. In the game



12 GAMES IN EXTENSIVE FORM 3

(-1.1) 1 -n a,-1n (-1.1)

ATl
FIGURE 1.2.1

tree shown, the vectors at the terminal vertices represent the payoff func-
tion; the numbers near the other vertices denote the player to whom the
move corresponds. The shaded area encloses moves in the same informa-
tion set.

1.2.4 Example. The game of pure strategy, or GOPS, is played by giving
each of two players an entire suit of cards (thirteen cards). A third suit is
shuffled, and the cards of this third suit are then turned up, one by one.
Each time one has been turned up, each player turns up one of his cards at
will: the one who turns up the larger card “wins” the third card. (If both
turn up a card of the same denomination, neither wins.) This continues
until the three suits are exhausted. At this point, each player totals the
number of spots on the cards he has “won”; the “score” is the difference
between what the two players have.

With thirteen-card suits, this game’s tree is too large to give here;
however, we can give part of the tree of an analogous game using three-
card suits (Figure 1.2.2). '

There is a single chance move, the shuffle, which orders the cards in one
of the six possible ways, each having a probability of 1. After this the
moves correspond to the two players, I and II, until the game ends. We
have drawn parts of the game tree, including the initial point, several
branches, and four of the terminal points. The remaining branches are
similar to those we have already drawn. With respect to information, we
have

1.2.5 Definition. Player i is said to have perfect information in T if his
information sets S/ each consist of one element. The game T is said to have
perfect information if each player has perfect information in T

For example, chess and checkers have perfect information, whereas
bridge and poker do not.
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(-2,2) (1,-1)(=1.1)(=22)

312 A(0)
FIGURE 1.2.2

1.3 Strategies: The Normal Form

The intuitive meaning of a strategy is that of a plan for playing a game. We
may think of a player as saying to himself, “If such and such happens, I'll
act in such and such a manner.” Thus we have

1.3.1 Definition. By a strategy for player i is meant a function which
assigns, to each of player /’s information sets S/, one of the arcs which
follows a representative vertex of S7.

The set of all strategies for player i will be called Z,.

In general, we are accustomed to the idea that a player decides his move
in a game only a few moves, at best, in advance, and quite usually only at
the moment he must make it. In practice this must be so, for in a game
such as chess or poker the number of possible moves is so great that no one
can plan for every contingency very much in advance. From a purely
theoretic point of view, however, we can overlook this practical limitation,
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and assume that, even before the game starts, each player has already
decided what he will do in each case. Thus, we are actually assuming that
each player chooses a strategy before the game starts.

Since this is so, it only remains to carry out the chance moves.
Moreover, the chance moves may all be combined into a single move,
whose result, together with the strategies chosen, determines the outcome of
the game.

Actually, what we are interested in, and what the players are interested
in, is deciding which one of the strategies is best, from the point of view of
maximizing the player’s share of the payoff (i.e., player i/ will want to
maximize the ith component of the payoff function). As, however, no one
knows, except probabilistically, what the results of the chance moves will
be, it becomes natural to take the mathematical expectation of the payoff
function, given that the players are using a given n-tuple of strategies.
Therefore we shall use the notation

M(0,,05, ...,0,)=(m(0,...,0,),7y(...)
v m(0),...,0)

to represent the mathematical expectation of the payoff function, given that
player i is using strategy o, € .

From this, it becomes possible to tabulate the function =(o,....,0,)
for all possible values of a,. . . ., g,. either in the form of a relation, or by
setting up an n-dimensional array of n-vectors. (In case n = 2, this reduces
to a matrix whose elements are pairs of real numbers.) This n-dimensional
array is called the normal form of the game T.

.3.2 Example. In the game of matching pennies (see Example 1.2.3)
each player has the two strategies, “heads” and “tails.” The normal form of
this game is the matrix

H T
H(-LD ]|, -1
TI((L=-D]|(=L1
(where each row represents a strategy of player I, and each column a
strategy of Player II).

1.3.3 Example. Consider the following game: An integer z is chosen at
random, with possible values 1, 2, 3, 4 (each with probability ). Player I,
without knowing the results of this move, chooses an integer x. Player II,
knowing neither the result of the chance move nor I's choice, chooses an
integer y. The payoff is

(ly—zl=Jx—a|x— 2] — |y — &)

i.e., the point is to guess close to z.
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In this game each player has four strategies: 1, 2, 3, 4, since other
integers are of little use. If, for instance, I chooses 1 and Il chooses 3, then
the payoff will be (2, —2) with probability 1, (0,0) with probability i, and
(—2,2) with probability 1. The expected payoff, then, is #(1,3) = (—1,1).
Calculating all the values of 7(0,,0,), we obtain

1.3.4 Definition. A game is said to be finite if its tree contains only
finitely many vertices.

Under this definition, most of our parlor games are finite. Chess, for
instance, is finite, thanks to the laws which end the game after certain
sequences of moves.

It should be seen that, in a finite game, each player has only a finite
number of strategies.

1.4 Equilibrium n-Tuples

1.4.1 Definition. Given a game T', a strategy n-tuple (ot,03,...,07) is
said to be in equilibrium, or an equilibrium n-tuple, if and only if, for any
i=1,...,nand any 6, €E Z,

m(ot, ..., 0%, 0,0, ...,0¥)<m(o},...,0F).

In other words, an n-tuple of strategies is said to be in equilibrium if no
player has any positive reason for changing his strategy, assuming that
none of the other players is going to change strategies. If, in such a case,
each player knows what the others will play, then he has reason to play the

strategy which will give such an equilibrium n-tuple, and the game becomes
very stable.

.42 Example. In the game with normal form:
B B

o [2D]©0,0

a [(0,0) | (1,2)

both (a,, B8,) and (a,, B,) are equilibrium pairs.
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Unfortunately, not every game has equilibrium n-tuples. As an example,
the game of matching pennies (Example 1.3.2) has no equilibrium pairs.

In general, if a game has no equilibrium n-tuples, we usually see the
several players trying to outguess each other, keeping their strategies secret.
This suggests (and it is indeed true) that in games of perfect information,
equilibrium n-tuples exist.

To prove this statement, we must study the question of decomposition
of a game.

A game I' will be said to decompose at a vertex X if there are no
information sets which include vertices from both of (a) X, and all its
followers, and (b) the remainder of the game tree. In this case, we can
distinguish the subgame, T'y, consisting of X, and all its followers, and the
quotient game, I'/ X, which consists of all the remaining vertices, plus X.
For the quotient game, X will be a terminal vertex; the payoff here can be
considered to be T'y: i.e., the payoff at this vertex is a play of the subgame
Ty.

Now, as we have seen, a strategy for / is a function whose domain
consists of the information sets of player i. If we decompose a game at X,
then we can also decompose the strategy ¢ into two parts: oy, obtained
by restricting ¢ to information sets in I'/ X, and o , obtained by restricting
o to T'y. Conversely, a strategy for I'/X and a strategy for Iy can be
combined in the obvious way to yield a strategy for the larger game T'.

1.4.3 Theorem. Let I decompose at X. For g; € Z,, assign to X (consid-
ered as a terminal vertex of I'/ X) the payoff

WX(Om-X, 02|rx, o ey o"lr.\’)'
In this case,
'IT(UI, ey Un) = 'n'r/X(ollr/X, e eey a"“'/x).

The proof of this theorem is clear and can be left as an exercise to the
reader. Briefly, it is only necessary to verify that, for each possible outcome
of the chance moves, the same terminal vertex is eventually reached either
in the original or in the decomposed game.

With this, we can prove

1.4.4 Theorem. Let ' decompose at X, and let 0; €2, be such that

(@) (oyr,> - - -, 0,r,) is an equilibrium n-tuple for Ty, and (b)
(0yr/x> - - - » Our/x) is an equilibrium n-tuple for '/ X, with the payoff
7(0yr,> - - - » Oyr,) assigned to the terminal vector X. Then (o), ..., 0,) is

an equilibrium n-tuple for T
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Proof: Leté, €Z2.. Because (Gyr,s - - - » Oyr,) is an equilibrium n-tuple
for T'y, it follows that

A
ﬂ"'(ollrx, BRI /1) ST a”lr,\) S 'lri(o”r‘_, o> oy onlr‘).

On the other hand, by (b) we know that, if we assign the payoff
7(0)r,s - - - » Opr,) tO the vector X, then

'”i(ollr/‘x, ey 6,-“‘/X, ceey "lr/X) S 7T,~(6”r/x, e ey onlr/X).

Now, the payoff (for a given set of strategies) is a weighted average of
the payoffs at some of the terminal vertices of a tree. Hence, if the payoff
to player i at a given terminal vertex (X, in this case) is decreased, his
expected payoff, for any choice of strategies, will either remain equal or be
decreased. Thus, applying Theorem 1.4.3, we find that

04 1 c58ps 500 O) ST, -« 02O

and so (g, ..., 0,) is an equilibrium n-tuple.

This is all we need to prove

1.4.5 Theorem. Every finite n-person game with complete information
has an equilibrium n-tuple of strategies.

Proof: We shall define the length of a game as the largest possible
number of edges that can be passed before reaching a terminal vertex, i.e.,
the largest possible number of moves before the game ends. Clearly a finite
game has finite length. The proof is by induction on the length of the game.

If T has length 0, the theorem is trivially true. If it has length 1, then at
most one player gets to move, and he obtains equilibrium by choosing his
best alternative. If T’ has length m, then it decomposes (having complete
information) into several subgames of length less than m. By the induction
hypothesis, each of these subgames has an equilibrium n-tuple; by Theorem
[.4.4 these form an equilibrium n-tuple for T.

Problems

1. An infinite game, even with perfect information, need not have an
equilibrium n-tuple.

(a) Consider a two-person game in which the two players alternate,
and, at each move, each player chooses one of the two digits 0 and 1. If
the digit x; is chosen at the ith move, then each play of the game



