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PREFACE

This book has been constructed primarily as a textbook for a one- or two-semester
course in statistical bioinformatics. We hope that it will first serve as a comprehensive
introduction to a broad range of topics in this area for life science students and
researchers who are motivated to learn statistical analysis concepts and techniques
in bioinformatics. Statistical and quantitative science audiences who have not yet
dealt with challenging statistical issues in recent information-rich biological and bio-
medical data analysis may also benefit from this book by efficiently reviewing the
different statistical concepts and techniques in such analyses. In particular, the four
separate blocks in this book—statistical foundation, high-dimensional analysis,
advanced topics, and multigene systems analysis—can be somewhat independently
studied and taught in a course based on relevant needs and time restrictions for an
effective learning purpose.

A similar outline as organized in this book has been used for several years in a
one-semester graduate course which is open to students with diverse backgrounds at
the University of Virginia. By publishing this book, we felt that these contents
could be significantly enhanced by direct contributions of more specialized experts
in the broad field of bioinformatics. In this multiauthor book, we have yet tried to
maintain the need of a high-level mathematical and statistical understanding at a mini-
mum. Readers of this book are thus assumed to have not much more than a basic col-
lege calculus level of mathematical understanding. A knowledge of matrix algebra
would also be useful but is not a prerequisite.

This book is certainly a tribute to the contributions and support of many people.
Acknowledgments are first due to the succeeding life science editors of John Wiley &
Sons: Luna Han, Thomas Moore, and Karen Chambers. Without their continuous sup-
port and encouragement, the publication of this book would not have been possible.
Also, all the efforts made by the expert authors who were willing to participate in
this book should be highly acknowledged for its successful completion. Finally, the
students who have taken this initial course and provided valuable feedback on various
topics in this area over the last several years are also significant contributors to the
current form of the book. The preparation of this book was supported in part by the
National Institutes of Health Research Grant RO1 HLO81690.

J. K. LEE

Division of Biostatistics and Epidemiology
Charlottesville, Virginia
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CHAPTER 1

ROAD TO STATISTICAL
BIOINFORMATICS

Jae K. Lee

Department of Public Health Science, University of Virginia,
Charlottesville, Virginia, USA

There has been a great explosion of biological data and information in recent years,
largely due to the advances of various high-throughput biotechnologies such as
mass spectrometry, high throughput sequencing, and many genome-wide SNP profil-
ing, RNA gene expression microarray, protein mass spectrometry, and many other
recent high-throughput biotechniques (Weinstein et al., 2002). Furthermore, powerful
computing systems and fast Internet connections to large worldwide biological data-
bases enable individual laboratory researchers to easily access an unprecedentedly
huge amount of biological data. Such enormous data are often too overwhelming to
understand and extract the most relevant information to each researcher’s investigation
goals. In fact, these large biological data are information rich and often contain much
more information than the researchers who have generated such data may have antici-
pated. This is why many major biomedical research institutes have made significant
efforts to freely share such data with general public researchers. Bioinformatics is
the emerging science field concerned with the development of various analysis
methods and tools for investigating such large biological data efficiently and rigor-
ously. This kind of development requires many different components: powerful com-
puter systems to archive and process such data, effective database designs to extract
and integrate information from various heterogeneous biological databases, and
efficient analysis techniques to investigate and analyze these large databases. In
particular, analysis of these massive biological data is extremely challenging for the
following reasons.

CHALLENGE 1: MULTIPLE-COMPARISONS ISSUE

Analysis techniques on high-throughput biological data are required to carefully
handle and investigate an astronomical number of candidate targets and possible
mechanisms, most of which are false positives, from such massive data (Tusher

Statistical Bioinformatics: A Guide for Life and Biomedical Science Researchers. Edited by Jae K. Lee
Copyright © 2010 Wiley-Blackwell



2  CHAPTER 1 ROAD TO STATISTICAL BIOINFORMATICS

et al., 2001). For example, a traditional statistical testing criterion which allows 5%
false-positive error (or significance level) would identify ~500 false positives from
10K microarray data between two biological conditions of interest even though no
real biologically differentially regulated genes exist between the two. If a small
number of, for example, 100, genes that are actually differentially regulated exist,
such real differential expression patterns will be mixed with the above 500 false posi-
tives without any a priori information to discriminate the true positives from the false
positives. Then, confidence on the 600 targets that were identified by such a statistical
testing may not be high. Simply tightening such a statistical criterion will result in a
high false-negative error rate, without being able to identify many important real
biological targets. This kind of pitfall, the so-called multiple-comparisons issue,
becomes even more serious when biological mechanisms such as certain signal trans-
duction and regulation pathways that involve multiple targets are searched from such
biological data; the number of candidate pathway mechanisms to be searched grows
exponentially, for example, 10! for 10-gene sequential pathway mechanisms. Thus,
no matter how powerful a computer system can handle a given computational task,
it is prohibitive to tackle such problems by exhaustive computational search and
comparison for these kinds of problems. Many current biological problems have
been theoretically proven to be NP (nonpolynomial) hard in computer science, imply-
ing that no finite (polynomial) computational algorithm can search all possible sol-
utions as the number of biological targets involved in such a solution becomes too
large. More importantly, this kind of exhaustive search is simply prone to the risk
of discovering numerous false positives. In fact. this is one of the most difficult chal-
lenges in investigating current large biological databases and is why only heuristic
algorithms that tightly control such a high false positive error rate and investigate a
very small portion of all possible solutions are often sought for many biological pro-
blems. Thus, the success of many bioinformatics studies critically depends on the con-
struction and use of effective and efficient heuristic algorithms, most of which are
based on probabilistic modeling and statistical inference techniques that can maximize
the statistical power of identifying true positives while rigorously controlling their
false positive error rates.

CHALLENGE 2: HIGH-DIMENSIONAL
BIOLOGICAL DATA

The second challenge is the high-dimensional nature of biological data in many bio-
informatics studies. When biological data are simultaneously generated with many
gene targets, their data points become dramatically sparse in the corresponding
high-dimensional data space. It is well known that mathematical and computational
approaches often fail to capture such high-dimensional phenomena accurately
(Tamayo et al., 1999). For example, many statistical algorithms cannot easily move
between local maxima in a high-dimensional space. Also, inference by combining
several disjoint lower dimensional phenomena may not provide the correct under-
standing on the real phenomena in their joint, high-dimensional space. It is
therefore important to understand statistical dimension reduction techniques that
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can reduce high-dimensional data problems into lower dimensional ones while the
important variation of interest in biological data is preserved.

CHALLENGE 3: SMALL-n AND LARGE-p PROBLEM

The third challenge is the so-called “small-n and large-p” problem. Desired perform-
ance of conventional statistical methods is achieved when the sample size, namely 7,
of the data, the number of independent observations of event, is much larger than the
number of parameters, say p. which need to be inferred by statistical inference (Jain
et al., 2003). In many bioinformatics problems, this situation is often completely
reversed. For example, in a microarray study, tens of thousands of gene transcripts’
expression patterns may become candidate prediction factors for a biological phenom-
enon of interest (e.g., tumor sensitivity vs. resistance to a chemotherapeutic com-
pound) but the number of independent observations (e.g., different patient biopsy
samples) is often at most a few tens or smaller. Due to the experimental costs and lim-
ited biological materials, the number of independent replicated samples can be some-
times extremely small, for example, two or three, or unavailable. In these cases, most
traditional statistical approaches often perform very poorly. Thus, it is also important
to select statistical analysis tools that can provide both high specificity and high
sensitivity under these circumstances.

CHALLENGE 4: NOISY HIGH-THROUGHPUT
BIOLOGICAL DATA

The fourth challenge is due to the fact that high-throughput biotechnical data and large
biological databases are inevitably noisy because biological information and signals of
interest are often observed with many other random or biased factors that may obscure
main signals and information of interest (Cho and Lee, 2004). Therefore, investi-
gations on large biological data cannot be successfully performed unless rigorous
statistical algorithms are developed and effectively utilized to reduce and decompose
various sources of error. Also, careful assessment and quality control of initial data
sets is critical for all subsequent bioinformatics analyses.

CHALLENGE 5: INTEGRATION OF MULTIPLE,
HETEROGENEOUS BIOLOGICAL DATA INFORMATION

The last challenge is the integration of information often from multiple heterogeneous
biological and clinical data sets, such as large gene functional and annotation data-
bases, biological subjects’ phenotypes, and patient clinical information. One of the
main goals in performing high-throughput biological experiments is to identify the
most important critical biological targets and mechanisms highly associated with
biological subjects’ phenotypes. such as patients’ prognosis and therapeutic response
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(Pittman et al., 2004). In these cases, multiple large heterogeneous datasets need to be
combined in order to discover the most relevant molecular targets. This requires com-
bining multiple datasets with very different data characteristics and formats, some of
which cannot easily be integrated by standard statistical inference techniques, for
example, the information from genomic and proteomic expression data and reported
pathway mechanisms in the literature. It will be extremely important to develop and
use efficient yet rigorous analysis tools for integrative inference on such complex bio-
logical data information beyond the individual researcher’s manual and subjective
integration.

In this book, we introduce the statistical concepts and techniques that can over-
come these challenges in studying various large biological datasets. Researchers with
biological or biomedical backgrounds may not be able, or may not need, to learn
advanced mathematical and statistical techniques beyond the intuitive understanding
of such topics for their practical applications. Thus, we have organized this book for
life science researchers to efficiently learn the most relevant statistical concepts and
techniques for their specific biological problems. We believe that this composition
of the book will help nonstatistical researchers to minimize unnecessary efforts in
learning statistical topics that are less relevant to their specific biological questions,
yet help them learn and utilize rigorous statistical methods directly relevant to those
problems. Thus, while this book can serve as a general reference for various concepts
and methods in statistical bioinformatics, it is also designed to be effectively used as a
textbook for a semester or shorter length course as below. In particular, the chapters are
divided into four blocks of different statistical issues in analyzing large biological
datasets (Fig. 1.1):

L. Statistical Foundation Probability theories (Chapter 2), statistical quality
control (Chapter 3), statistical tests (Chapter 4)

Statistical foundation Advanced topics
2. Probability 8. Statistical modeling
3. Statistical quality control | == | 9. Experimental design
4. Statistical tests 10. Resampling methods
High-dimensional analysis Multigene systems analysis
5. Clustering 11. Gene network analysis
6. Classification e 12. Genetic association
7. Multidimensional 13. R Bioconductor
visualization in systems biology

Figure 1.1 Possible course structure.
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II. High-Dimensional Analysis Clustering analysis (Chapter 5), classification
analysis (Chapter 6), multidimensional visualization (Chapter 7)

III. Advanced Analysis Topics Statistical modeling (Chapter 8), experimental
design (Chapter 9), statistical resampling methods (Chapter 10)

IV. Multigene Analysis in Systems Biology Genetic network analysis
(Chapter 11), genetic association analysis (Chapter 12), R Bioconductor tools
in systems biology (Chapter 13)

The first block of chapters will be important, especially for students who do not
have a strong statistical background. These chapters will provide general backgrounds
and terminologies to initiate rigorous statistical analysis on large biological datasets
and to understand more advanced analysis topics later. Students with a good statistical
understanding may also quickly review these chapters since there are certain key con-
cepts and techniques (especially in Chapters 3 and 4) that are relatively new and
specialized for analyzing large biological datasets.

The second block consists of analysis topics frequently used in investigating
high-dimensional biological data. In particular, clustering and classification tech-
niques, by far, are most commonly used in many practical applications of high-
throughput data analysis. Various multidimensional visualization tools discussed
in Chapter 7 will also be quite handy in such investigations.

The third block deals with more advanced topics in large biological data analy-
sis, including advanced statistical modeling for complex biological problems, statisti-
cal resampling techniques that can be conveniently used with the combination of
classification (Chapter 6) and statistical modeling (Chapter 8) techniques, and exper-
imental design issues in high-throughput microarray studies.

The final block contains concise description of the analysis topics in several
active research areas of multigene network and genetic association analysis as well
as the R Bioconductor software in systems biology analysis. These will be quite
useful for performing challenging gene network and multigene investigations in the
fast-growing systems biology field.

These four blocks of chapters can be followed with the current order for a full
semester-length course. However, except for the first block, the following three
blocks are relatively independent of each other and can be covered (or skipped for
specific needs and foci under a time constraint) in any order, as depicted in
Figure 1.1. We hope that life science researchers who need to deal with challenging
analysis issues in overwhelming large biological data in their specific investigations
can effectively meet their learning goals in this way.
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