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Preface

The mathematical theory of ondelettes (wavelets) was developed by Yves
Meyer and many collaborators about 10 years ago. It was designed for ap-
proximation of possibly irregular functions and surfaces and was successfully
applied in data compression, turbulence analysis, image and signal process-
ing. Five years ago wavelet theory progressively appeared to be a power-
ful framework for nonparametric statistical problems. Efficient computa-
tional implementations are beginning to surface in this second lustrum of
the nineties. This book brings together these three main streams of wavelet
theory. It presents the theory, discusses approximations and gives a variety
of statistical applications. It is the aim of this text to introduce the novice
in this field into the various aspects of wavelets. Wavelets require a highly
interactive computing interface. We present therefore all applications with
software code from an interactive statistical computing environment.
Readers interested in theory and construction of wavelets will find here in
a condensed form results that are somewhat scattered around in the research
literature. A practioner will be able to use wavelets via the available software
code. We hope therefore to address both theory and practice with this book
and thus help to construct bridges between the different groups of scientists.

This text grew out of a French-German cooperation (Séminaire Paris-
Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and
applied statisticians from Berlin and Paris. This work originates in the first
of these seminars organized in Garchy, Burgundy in 1994. We are confident
that there will be future research work originating from this yearly seminar.

This text would not have been possible without discussion and encour-
agement from colleagues in France and Germany. We would like to thank
in particular Lucien Birgé, Christian Gourieroux, Yuri Golubev, Marc Hoff-
mann, Sylvie Huet, Emmanuel Jolivet, Oleg Lepski, Enno Mammen, Pascal
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Massart, Michael Nussbaum, Michael Neumann, Volodja Spokoiny, Karine
Tribouley. The help of Yuri Golubev was particularly important. OQur Sec-
tions 11.5 and 12.5 are inspired by the notes that he kindly provided. The
implementation in XploRe was professionally arranged by Sigbert Klinke and
Clementine Dalelane. Steve Marron has established a fine set of test func-
tions that we used in the simulations. Michael Kohler and Marc Hoffmann
made many useful remarks that helped in improving the presentation. We
had strong help in designing and applying our BWTEX macros from Wolfram
Kempe, Anja Bardeleben, Michaela Draganska, Andrea Tiersch and Kerstin
Zanter. Un tres grand merci!

Berlin-Paris, September 1997

Wolfgang Hardle
Gerard Kerkyacharian,
Dominique Picard
Alexander Tsybakov



Symbols and Notation
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xviil SYMBOLS AND NOTATION

f*xg convolution of f and g
I{A} indicator function of a set A
a.e. almost everywhere

supp f support of function f

ess sup essential supremum

Flo) m-th derivative

mf(z) = f(z — h) shift operator

wy(f,t) modulus of continuity in the L, norm
K(z,y) kernel

d; Kronecker’s delta

~ asymptotic identical rate
> sum over all k € Z

k
card cardinality of a set §2
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Chapter 1

Wavelets

1.1 What can wavelets offer?

A wavelet is, as the name suggests, a small wave. Many statistical phenom-
ena have wavelet structure. Often small bursts of high frequency wavelets are
followed by lower frequency waves or vice versa. The theory of wavelet re-
construction helps to localize and identify such accumulations of small waves
and helps thus to better understand reasons for these phenomena. Wavelet
theory is different from Fourier analysis and spectral theory since it is based
on a local frequency representation.

Let us start with some illustrative examples of wavelet analysis for fi-
nancial time series data. Figure 1.1 shows the time series of 25434 log(ask)
— log(bid) spreads of the DeutschMark (DEM) - USDollar (USD) exchange
rates during the time period of October 1, 1992 to September 30, 1993.
The series consists of offers (bids) and demands (asks) that appeared on
the FXFX page of the Reuters network over the entire year, see Bossaerts,
Hafner & Hardle (1996), Ghysels, Gourieroux & Jasiak (1995). The graph
shows the bid - ask spreads for each quarter of the year on the vertical axis.
The horizontal axis denotes time for each quarter.

The quarterly time series show local bursts of different size and frequency.
Figure 1.2 is a zoom of the first quarter. One sees that the bid-ask spread
varies dominantly between 2 - 3 levels, has asymmetric behavior with thin but
high rare peaks to the top and more oscillations downwards. Wavelets provide
a way to quantify this phenomenon and thereby help to detect mechanisms

1



