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Early Events in Neural
Development

INTRODUCTION

CHAPTER

1

The development of the nervous system is difficult to separate, as a
topic, from the development of the rest of the animal. The nervous
system is ultimately the collection of cells that organizes an animal’s
behavior. But embryos do not behave, at least in the beginning, and
there is really no reason to imagine that neural development is funda-
mentally different from the generation of other organ systems. More-
over, the nervous system does not, of course, develop in isolation: it
both is influenced by and influences the motor and sensory organs that
allow an animal to act and to react. Finally, the development of the
nervous system depends on-a metabolic and hormonal context. Thus,
it is no more sensible to talk about neural development without refer-
ence to the general course of embryogenesis than it is to discuss the
performance of a conductor without reference to the orchestra; it is
often done, but not very usefully.

Throughout this account, then, we have tried to relate the devel-
opment of the nervous system to development generally, and the views
of neurobiologists to the ideas of experimental embryologists.

THE RISE OF EXPERIMENTAL EMBRYOLOGY

Although many historical controversies seem outdated in retrospect,
surprisingly few fundamental issues in development have really been
settled; they have simply taken on different guises as technical and
intellectual styles have changed. “It is easy to sneer at our ancestors,”
wrote T. H. Huxley, “. . . but it is much more profitable to try to
discover why they, who were not really one whit less sensible persons
than our excellent selves, should have been led to entertain views which
strike us as absurd” (Meyer, 1939). '
Perhaps it was Aristotle who began what must surely be one of the
most protracted debates in the history of science: Is the development
of animals based on preformation, or is it the result of an initial plan
operating in conjunction with “external” factors? The idea that the
zygote is simply a miniature individual that grows seemed so cogent
that many philosophers took this notion of development for granted.




4 CHAPTER ONE

“In the seed,” the Roman philosopher Seneca declared about 2000 years
ago, “are enclosed all the parts of the body of the man that shall be
formed. The infant that is borne in his mother’s wombe hath the rootes
of the beard and hair that he shall weare one day. In this little masse -
likewise are all the lineaments of the bodie and all that which Posterity
shall discover in him” (quoted from Needham, 1959). Even with the
advent of the microscope, the appeal of preformation was so strong
that biologists claimed to see a homunculus in the head of a human
sperm and a microscopic horse in equine semen. There were, of course,
arguments against preformation (Meyer, 1939; Needham, 1959; Oppen-
heimer, 1967). For example, this view logically requires the inclusion of
all humanity in a single ancestral homunculus. In spite of such counter
arguments, the thrust of developmental inquiry well into the nineteenth
century was not so much to question preformation but to decide
whether the key element in this scheme was the egg or the sperm.

By the middle of the nineteenth century, the idea of preformation
was in decline, largely as a result of the observations and arguments of
C. F. Wolff and K. E. von Baer. In particular, von Baer's Entwicklungs-
geschichte der Thiere (roughly Developmental History of the Animals), pub-
lished in 1828, convinced many people that embryos simply did not
look like miniature replicas of the adults they would become. In fact,
embryos, regardless of species, resembled the embryos of other animals
much more than they resembled the adults of their own kind (Figure
1). As concern shifted from homunculi to heritability, debates about
development took on a decidedly more modern ring; it seemed that
gametes might contain information needed to create an organism rather
than animal rudiments in miniature form (Wilson, 1911; Jacob, 1982).
A major proponent of this new view was W. Roux, who is generally
credited with founding the discipline of experimental embryology and,
indirectly, the more specialized field of neuroembryology (Hamburger,
1981).

Roux, who lived from 1850 to 1924, was the son of the fencing
master at the University of Jena, where he became a student of the
biologist and philosopher E. Haeckel. Haeckel was the foremost expo-
nent of the biological approach to embryonic development in the late
nineteenth century: the key to ontogeny, he argued, lay in phylogeny
(see Box A). Haeckel’s teachings apparently impressed Roux in two
ways. On the one hand, Roux found Haeckel's emphasis on phylogeny
unsatisfactory and metaphysical; on the other hand, he was intrigued
by Haeckel’s interest in the physicochemical basis of development
(Gould, 1977). Rouy did not accept Haeckel’s verdict that phylogeny is
a sufficient cause for ontogeny; he realized that proximate causes had
to be analyzed. In consequence, he emphasized the importance of dis-
covering a causal scheme of embryogenesis; he called this scheme “De-
velopmental Mechanics” (in an analogy to Newton’s laws of mechanics).

A central question that absorbed Roux’s interest was the cause of
embryonic differentiation: How do cells that develop from a single
fertilized egg become so different in form and function? To attack this



FIGURE 1. The appearance of vertebrate embryos at  damental observation suggests that these different ani-
various stages of development. The similarity of different  mals share both @ common ancestor and the same basjc
embryos during early development i< striking; this fun-  mechanisms of development. (From Romanes, 1901.)

problem Roux took up an experiment initially performed by Haeckel in
1869. Haeckel had tried to kill one of the first two cells produced by
the cleavage of a fertilized frog egg, but he met with little success. Roux
realized that the embryo arising from the remaining cell should indicate
whether each cell generates a unique part or whether individual cells
have a broader potential. In 1888 Roux published the results of experi-
ments in which he succeeded in killing one blastomere at the 2-cell
stage (Roux, 1888). The structures that grew from the residual cell
appeared to constitute half an embryo, and Roux therefore concluded
that each blastomere develops independently. On the basis of this result
he proposed a mosaic theory of development that held that the fate of
cells is preordained: each cell was regarded as having only the mfor-
mation necessary to create a particular part of the embryo.

Three years later, in 1891, H. Driesch tested Roux’s conclusion more

EARLY EVENTS IN NEURAL DEVELOPMENT 5



A ‘Ontogeny and Phylogeny

An important controversy that bears on the
| ~modern view of development is the relation-
Shlp of embryogenesis to the obvious hierarchy
* of animal species (Gould, 1977). Although the
argument can be traced earlier, the modern
portion of the story begins with K. E. von Baer
(1792-1876). A popular idea in the eighteenth
century was that the embryos of higher animals
recapitulate the adult features of lower forms.
Von Baer (who figured in the discovery of the
mammalian ovum, put forward the germ-layer
theory and discovered the notochord in chick
embryos, among other accomplishments) vig-
orously attacked this notion of recapitulation
(von Baer, 1828). He suggested instead that the
more general features of animals appear earlier
than special features and that de¥eloping em-
bryos. of different species simply depart more
and more from an early form common to all
(see Figure 1). This sensible argument was tem-
porarily eclipsed by E. Haeckel’s assertion that
the normal events of early development are a

recapitulation of biological history (Haeckel, by
the way, coined the terms ontogeny and phylo-
geny). For Haeckel, development was simply
an accelerated version of evolution. However,
Haeckel’s idea that development proceeds
through a series of adult stages of lower forms
(a human embryo is first a fishysimply did not .
fit the facts. Embryonic men are not really like
fish at some point; rather, human embryos and
fish embryos are at early times very similar.
The similarity of early embryos is relevant
to theories of evolution because it implies that
more complex forms arose from a common
ancestor—evidently the strategy of early de-
velopment is highly conserved. In accord with
this idea is the fact that the genes of closely
related species (man and monkey, for instance)
differ very little. This presumably means that
the profound differences between the two spe-
cies do not arise from major differences in ge-
netic programs. One view of speciation is that
many differences between animals arise from

6 CHAPTER ONE

carefully with sea urchin eggs at the Zoological Station in Naples (Figure
2). Instead of killing one of the first two blastomeres, Driesch separated
them so that each cell could develop independently. In this circumstance
Driesch found that the isolated blastomeres developed into fully
formed, if smaller, larvae (Driesch, 1892). Subsequently, H. Spemann
and others confirmed Driesch’s work in vertebrates, thus invalidating
Roux’s major experimental contribution. The reason for Roux’s misin-
terpretation was probably that the damaged cell, which remained in
contact with the other blastomere, caused development to proceed ab-
normally.

In the end, however, it was Driesch who gave up science after a few
years to become a professor of philosophy; in this post he argued that
the “harmonious equipotential system” that the embryo represents is
beyond analysis. He felt that no system of mechanics could explain
how a part could be transformed into a whole. Roux, on the other hand,
became a leader of German science, lectured widely, and continued to
promote experimental embryology. Not the least of his achievements
was founding the Archiv fiir Entwicklungsmechanik (Archives of Devel-
opmental Mechanics) in 1894 (now Wilhelm Roux’s Archives). Influenced



A juvenfle and an adult chimpanzee. The resem-
blance of the juvenile chimp to an adult man suggests
that differences in the duration of development pro-

modulations of the regulatory systems that
govern quite general aspects of development,
such as rate. S. J. Gould and others have ar-
gued that humans and primates may differ be-
cause of the more protracted development of
humans (Gould; 1977). For instance, by the cri-

terion of ossification, a newborn infant (40 °

duce major differences in form. (From A. Naef,
1926.)

weeks) is comparable to an 18-week monkey
fetus (macaque), and the bones of a macaque
at birth (24 weeks) are similar in their devel-
opment to a child of several years! Indeed, the
physiognomy of an adult human bears a much
greater resemblance to a baby chimp than to a
full-grown ape (see figure). :

FIGURE 2. fnduced twinning of amphibian eggs. The notion that the earliest embry-
onic cells in every animal are preordained to give rise to only a part of the embryo had
to be discarded when the German zoologist and philosopher H. Driesch showed that each
of the first two blastomeres of the sea urchin egg could give rise to a complete larva.
This point. was confirmed in an experiment carried out by H. Spemann in which a
salamander egg was constricted by a fine thread in the plane of the first cleavage furrow,
as illustrated here. (After Hamburger, 1963.)

EARLY EVENTS IN NEURAL DEVELOPMENT 7



by Roux’s approach, T. H. Morgan, E. G. Conklin, H. Spemann, E. B.
Wilson, F. R. Lillie, R. G. Harrison, and others rapidly provided a body
of classic experiments in this field (Wilson, 1911; Morgan, 1927;
Detwiler, 1936; Waddington, 1936). Before Roux, embryology as a dis-
cipline was either a philosophical or an entirely descriptive pursuit;”
Roux made it an experimental and analytical science. “In zoology,”
Spemann wrote in 1938, “. . . the speculations on evolution have, partly,
perhaps for accidental . . . reasons, outweighed and overpowered every
other interest for a number of decades. Here, the initiative of an original
thinker was necessary to remind investigators of the fundamental prin-
ciple [of strict causation]. We owe this achievement to Wilhelm Roux.
He will always be honored as the founder of a new discipline in animal
embryology” (Spemann, 1938).

In fact, the controversy about whether the fate of early embryonic
cells is preordained or determined by interactions with other cells and
the environment has never been fully resolved. A variety of observa-
tions and experiments indicate that both preordination and flexibility
are important in different aspects of development (Chapter 2).

SOME MAJOR EVENTS IN EARLY EMBRYONIC DEVELOPMENT

'8 CHAPTER ONE

Respective roles of nucleus and cytoplasm in the earliest
stages of development

Development begins with the activation of the egg, usually stimulated
by the penetration of a sperm. At the turn of the nineteenth century,
the relative importance of the egg nucleus and cytoplasm in develop-
ment was unclear. In the 1890s, T. Boveri, who later showed that
chromosomes are qualitatively different from one another, found that
fragments of sea urchin egg that contained only cytoplasm and the
genetic material contributed by a sperm developed into an embryo, all
parts of which were characteristic of the paternal species (Wilson, 1911).
This observation suggested what is now taken for granted: the nuclear
material rather than the cytoplasm carries the genetic information.
These experiments were extended by I. ]J. Lorch and J. F. Danielli, who
were able to remove (and subsequently reimplant) nuclei from amoebae
(Lorch and Danielli, 1950). The enucleated cells failed to survive; they
could, however, be rescued by subsequent nuclear implantation.

Other experiments; however, showed that the cytoplasm of the egg
also plays a critical fole in development. The egg cytoplasm has an
uneven distribution of cytoplasmic inclusions such as lipid droplets and
yolk granules; such asymmetries are ti.e basis for describing eggs as
having an animal pole and a vegetal pole (Figure 3). Different parts of
the egg cytoplasm have special functions in development. A striking
example is the egg of Styela (a sea squirt). Before fertilization the egg
has three distinct regions: a peripheral layer that is yellow, a central
mass of gray yolk, and a clear germinal vesicle. E. G. Conklin was.one
of the first embryologists to note that the egg cytoplasm is rearranged
within a few minutes of fertilization (Conklin, 1905, 1932). The yellow



