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Preface

The Monster is the most amazing among the finite simple groups. The best
way to approach it is via an amalgam called the Monster amalgam.

Traditionally one of the following three strategies are used in order to
construct a finite simple group H:

(I) realize H as the automorphism group of an object &;
(II) define H in terms of generators and relations;
(III) identify H as a subgroup in a ‘familiar’ group F generated by given
elements.

The strategy offered by the amalgam method is a symbiosis of the above
three. Here the starting point is a carefully chosen generating system H =
{H; | i € I} of subgroups in H. This system is being axiomatized under the
name of amalgam and for a while lives a life of its own independently of H. In
a sense this is almost like (IIT) although there is no ‘global’ group F (familiar
or non-familiar) in which the generation takes place. Instead one considers the
class of all completions of H which are groups containing a quotient of H as a
generating set. The axioms of H as an abstract amalgam do not guarantee the
existence of a completion which contains an isomorphic copy of H. This is a
familiar feature of (II): given generators and relations it is impossible to say in
general whether the defined group is trivial or not. This analogy goes further
through the universal completion whose generators are all the elements of 'H
and relations are all the identities hold in H. The faithful completions (whose
containing a generating copy of /) are of particular importance. To expose a
similarity with (I) we associate with a faithful completion X a combinatorial
object & = E(X, H) known as the coset geometry on which X induces a flag-
transitive action. This construction equips some group theoretical notions with
topological meaning: the homomorphisms of faithful completions correspond
to local isomorphisms of the coset geometries; if X is the universal completion
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Xii Preface

of H, then E(X, H) is simply connected and vice versa. The ideal outcome is
when the group H we are after is the universal completion of its subamalgam
‘H. In the classical situation, this is always the case whenever H is taken to
be the universal central cover of a finite simple group of Lie type of rank at
least 3 and H is the amalgam of parabolic subgroups containing a given Borel
subgroup.

By the classification of flag-transitive Petersen and tilde geometries accom-
plished in [Iv99] and [ISh02], the Monster is the universal completion of an
amalgam formed by a triple of subgroups

G ~ 2 .Coy,
G2 Y 22+”+22.(M24 X 53)’

G3 A 23+6+]2+18.(3 . Sﬁ x L3(2)),

where [G, : G1NG3] =3, [G3: G NG3] =[G3: GaNG3] =7. Infact,
explicitly or implicitly, this amalgam has played an essential role in proofs
of all principal results about the Monster, including discovery, construction,
uniqueness, subgroup structure, Y -theory, moonshine theory.

The purpose of this book is to build up the foundation of the theory of
the Monster group adopting the amalgam formed by G, G2, and G3 as the
first principle. The strategy is similar to that followed for the fourth Janko
group Jy in [Iv04] and it amounts to accomplishing the following principal
steps:

(A) ‘cut out’ the subset G| U G, U G3 from the Monster group and
axiomatize the partially defined multiplication to obtain an abstract
Monster amalgam M,

(B) deduce from the axioms of M that it exists and is unique up to
isomorphism;

(C) by constructing a faithful (196 883-dimensional) representation of M
establish the existence of a faithful completion;

(D) show that a particular subamalgam in M possesses a unique faithful
completion which is the (non-split) extension 2 - BM of the group of
order 2 by the Baby Monster sporadic simple group BM (this proves that
every faithful completion of M contains 2 - BM as a subgroup);

(E) by enumerating the suborbits in a graph on the cosets of the
2 - BM-subgroup in a faithful completion of M (known as the Monster
graph), show that for any such completion the number of cosets is the
same (equal to the index of 2 - BM in the Monster group);
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(F) defining G to be the universal completion of M conclude that G is the
Monster as we know it, that is a non-abelian simple group, in which G|
is the centralizer of an involution and that

|G| =2%.3%0.5%.76.112.13%.17.19.23-29-31-41-47-59 - 71.

In terms of the Monster group G, the Monster graph can be defined as
the graph on the class of 2 A-involutions in which two involutions are
adjacent if and only if their product is again a 2A-involution. The
centralizer in G of a 2A-involution is just the above-mentioned subgroup
2 - BM. It was known for a long time that the 2 A-involutions in the
Monster form a class of 6-transpositions in the sense that the product of
any two such involutions has order at most 6. At the same time the

2 A-involutions act on the 196 884-dimensional G-module in a very
specific manner, in particular we can establish a G-invariant
correspondence of the 2A-involutions with a family of so-called axial
vectors so that the action of an involution is described by some simple
rules formulated in terms of the axial vector along with the G-invariant
inner and algebra products on this module (the latter product goes under
the name of Griess algebra). The subalgebras in the Griess algebra
generated by pairs of axial vectors were calculated by Simon

Norton [N96]: there are nine isomorphism types and the dimension is at
most eight. By a remarkable result recently proved by Shinya Sakuma in
the framework of the Vertex Operator Algebras [Sak07], these nine types
as well as the 6-transposition property are implied by certain properties
of the axial vectors and the corresponding involutions. In this volume we
axiomatize these properties under the names of Majorana axial vectors
and Majorana involutions. The fact that the Monster is generated by
Majorana involutions will certainly dominate the future studies.



Contents

Preface

M34 and all that

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

Golay code

Todd module

Anti-heart module

Extraspecial extensions

Parker loop (£, o)

Aut(L, o)

Back to extraspecial extensions

Leech lattice and the monomial subgroup
Hexacode

Centralizer—commutator decompositions
Three bases subgroup

The Monster amalgam M

2.1
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11

Defining the amalgam

The options for G
Analysing G

G3/Z and its automorphisms
Assembling G, from pieces
Identifying {G, G»}
Conway’s realization of G,
Introducing G3
Complementing in G
Automorphisms of G3
L3(2)-amalgam

vii

page Xi

N =

10

16
19
23
25
31
34
37

41
41
43
45
49
52
57
59
62
65
68
70



viii

Contents

2.12 Constructing G3
2.13  G3 contains L3(2)
2.14 Essentials

196 883-representation of M

3.1 Representing {G, G2}

3.2  Incorporating G3

3.3 Restricting to G5

3.4 Permuting the ¢(G3)-irreducibles
35 Gg’ is isomorphic to G3

2-local geometries

4.1  Singular subgroups

4.2  Tilde geometry

43 2'0+16 o (2)-subgroup

44 22. (2E6(2)) : §3-subgroup
4.5  Acting on the 196 883-module

Griess algebra

5.1  Norton’s observation

5.2 3-dimensional S4-algebras

5.3  Krein algebras

5.4  Elementary induced modules

5.5 (QT0(2), H}gs) is a Norton pair
5.6  Allowances for subalgebras

5.7  Gi-invariant algebras on Crj(Z))
5.8  Ga-invariant algebras on Cpj(Z3)
5.9  Producing A®

5.10 Expanding A®

Automorphisms of Griess algebra

6.1  Trace form

6.2  Some automorphisms

6.3  Involution centralizer

6.4  Explicit version of A®

6.5  222-triangle geometry

6.6  Finiteness and simplicity of ¢(G)

Important subgroups

7.1  Trident groups

7.2 Tri-extraspecial groups
7.3 Parabolics in 2'! - My

73
75
76

80
81
97
98
102
105

107
107
111
112
117
119

121
122
124
126
128
132
134
136
138
145
146

149
149
150
152
154
163
165

168
169
172
175



Contents

7.4 3. Fips-subgroup

7.5 2. BM-subgroup

7.6  p-locality

7.7  Thompson group

7.8  Harada—Norton group

Majorana involutions

8.1 196883+1=196 884

8.2  Transposition axial vectors
8.3  Spectrum

8.4  Multiplicities

8.5  Fusion rules

8.6  Main definition

8.7  Sakuma’s theorem

8.8  Majorana calculus

8.9  Associators

The Monster graph

9.1  Collinearity graph
9.2  Transposition graph
9.3  Simple connectedness
9.4  Uniqueness systems

Fischer’s story

References
Index

X

178
184
190
191
195

199
199
200
201
205
208
209
212
214
224

228
228
230
232
233

235

245
251



1
M>4 and all that

This chapter can be considered as a usual warming up with Mathieu and Con-
way groups, prior to entering the realm of the Monster. It is actually aimed at
a specific goal to classify the groups which satisfy the following condition:

T ~ 2_l|_+22 .M24

The quotient O2(T)/Z(T) (considered as a G F(2)-module for T/0,(T) =
M34) has the irreducible Todd module C}‘l as a submodule and the irreducible
Golay code module Cy; as the corresponding factor module. It turns out that
there are exactly two such groups 7': one splits over O»(T) with O2(T)/Z(T)
being the direct sum C}, @ C11, while the other does not split, and the module
0,(T)/Z(T) is indecomposable. The latter group is a section in the group
which is the first member 2L+24.C o1 of the Monster amalgam.

1.1 Golay code

Let F be a finite field, and let (i, n) be a pair of positive integers with m < n.
A linear (m, n)-code over F is a triple (V,, P, C) where V,, is an n-dimensional
F-space, P is a basis of V,,, and C is a m-dimensional subspace in V,,. Although
the presence of V,, and P is always assumed, it is common practice to refer to
such a code simply by naming C. It is also assumed (often implicitly) that V,
is endowed with a bilinear form b with respect to which P is an orthonormal
basis

b(p,q) =8p4 for p,q € P.

]



2 Myy4 and all that

The dual code of C is the orthogonal complement of C in V,, with respect to b,
that is

{e | e € V,, b(e, c) =0 forevery c € C}.

Since b is non-singular, the dual of an (m, n)-code is an (n — m, n)-code.
Therefore, C is self-dual if and only if it is totally singular of dimension half
the dimension of V,,. The weight wt(c) of a codeword ¢ € C is the number of
non-zero components of ¢ with respect to the basis . The minimal weight of
C is defined as

m(C) = min wt(c).
ceC\{0}
The codes over the field of two elements are known as binary codes. In the
binary case, the map which sends a subset of P onto the sum of its elements
provides us with an identification of V, with the power set of P (the set of all
subsets of P). Subject to this identification, the addition is performed by the
symmetric difference operator, the weight is just the size and b counts the size
of the intersection taken modulo 2, i.e. for u, v C P we have

u+v=wUv)\ (uNv);
wt (1) = |ul;
b(u,v) = |lu Nv| mod 2.

A binary code is said to be even or doubly even if the weights (i.e. sizes) of all
the codewords are even or divisible by four, respectively. Notice that a doubly
even code is always totally singular with respect to b.

A binary (12, 24)-code is called a (binary) Golay code if it is doubly even,
self-dual of minimal weight 8. Up to isomorphism there exists a unique Golay
code which we denote by Cj;. In view of the above discussion, Cj» can be
defined as a collection of subsets of a 24-set P such that C;, is closed under
the symmetric difference, the size of every subset in Cy; is divisible by four
but not four and |[Cj2]| = 2'2. The subsets of P contained in Cj3 will be called
Golay sets.

There are various constructions for the Golay code. We are going to review
some basic properties of Cj2 and of its remarkable automorphism group Maq.
The properties themselves are mostly construction-invariant while the proofs
are not. We advise the reader to refer to his favorite construction to check
the properties (which are mostly well-known anyway) while we will refer to
Section 2.2 of [Iv99].
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The weight distribution of Cy3 is
Ol 8759 122576 ]6759 241

which means that besides the improper subsets ¥ and P the family of Golay
sets includes 759 subsets of size 8 (called octads), 759 complements of octads,
and 2576 subsets of size 12 called dodecads (splitting into 1288 complemen-
tary pairs). If B is the set of octads, then (P, B) is a Steiner system of type
S(5, 8, 24) (this means that every 5-subset of P is in a unique octad). Up to
isomorphism (P, B) is the unique system of its type and Ci; can be redefined
as the closure of B with respect to the symmetric difference operator in the
unique Steiner system of type S(5, 8, 24).
If (Va4, P, Cy2) is the full name of the Golay code, then

Cly := Vaa/Ci2

is known as the 12-dimensional Todd module. We continue to identify Vo4
with the power set of P and for v C P the coset v 4 Cj2 (which is an element
of C},) will be denoted by v*. It is known that for every v C P there is a
unique integer 7 (v) € {0, 1, 2, 3, 4} such that v* = w* for some w C P with
|w| = t(v). Furthermore, if #(v) < 4, then such w is uniquely determined by
v; if t (v) = 4, then the collection

SW) ={w|wCP,w =4 v*"=w"

forms a sextet. The latter means that S(v) is a partition of P into six 4-subsets
(also known as tetrads) such that the union of any two tetrads from S(v) is an
octad. Every tetrad w is in the unique sextet S(w) and therefore the number of

sextets is
24
1771 = /6.
4

The automorphism group of the Golay code (which is the set of permutations
of P preserving C» as a whole) is the sporadic simple Mathieu group Maq4.
The action of M4 on P is 5-fold transitive and it is similar to the action
on the cosets of another Mathieu group M,3. The stabilizer in M4 of a pair
(a 2-subset of P) is an extension of the simple Mathieu group M>, of degree
22 (which is the elementwise stabilizer of the pair) by an outer automorphism
of order 2. The stabilizer of a triple is an extension of L3(4) (sometimes called
the Mathieu group of degree 21 and denoted by M53;) by the symmetric group
S3 of the triple.

The sextet stabilizer M (S) is an extension of a group K s of order 2° - 3 by
the symmetric group Sg of the set of tetrads in the sextet. The group K s (which
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is the kernel of the action of M(S) on the tetrads in the sextet is a semidirect
product of an elementary abelian group Qs of order 2% and a group X of
order 3 acting on Qs fixed-point freely. If we put

Ys = Nus)(Xs),

then Yg = 3 - Sg is a complement to Qs in M(S); Ys does not split over X s
and Cyg(Xs) = 3 - Ap is a perfect central extension of Ag. Furthermore, Yg
is the stabilizer in M»4 of a 6-subset of PP not contained in an octad (there is a
single M»4-orbit on the set of such 6-subsets).

Because of the 5-fold transitivity of the action of M»4 on P, and since (P, B)
is a Steiner system, the action of M4 on the octads is transitive. The sta-
bilizer of an octad is the semidirect product of an elementary abelian group
Qo of order 2* (which fixes the octad elementwise) and a group K which
acts faithfully as the alternating group Ag on the elements in the octad and
as the linear group La4(2) on Q@ (the latter action is by conjugation). Thus,
the famous isomorphism Ag = L4(2) can be seen here. The action of M4 on
the dodecads is transitive, with the stabilizer of a dodecad being the simple
Mathieu group M|, acting on the dodecad and on its complement as on the
cosets of two non-conjugate subgroups each isomorphic to the smallest simple
Mathieu group M. These two M;-subgroups are permuted by an outer auto-
morphism of M, realized in Mp4 by an element which maps the dodecad onto
its complement.

The following lemma is easy to deduce from the description of the stabilizers
in Mp4 of elements in Cy2 and in CJ,.

Lemma 1.1.1 Let u and v be elements of C12, and let M (u) and M (v) be their
respective stabilizers in M4. Then:

(i) M(u) does not stabilize non-zero elements of C{,;
(i) if u and v are octads, then (u N v)* is the only non-zero element of Cy,
stabilized by M (u) N M (v). O

A presentation d = u+v of a dodecad as the sum (i.e. symmetric difference)
of two octads determines the pair # Nv in the dodecad complementary to d and
also a partition of d into two heptads (6-subsets) u \ v and v \ u. If K is the
set of all heptads obtained via such presentations of d, then (d, K) is a Steiner
system of type S(5, 6, 12) (every 5-subset of d is in a unique heptad). There is
a bijection between the pairs of complementary heptads from K and the set of
pairs in P \ d such that if d = h U h; corresponds to {p, ¢}, then h; U {p, g}
and hy U {p, g} are octads, and d is their symmetric difference.
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Lemma 1.1.2 Let d be a dodecad, {p, q} be a pair disjoint from d, and let
d = hy U hy be the partition of d into heptads which correspond to {p, q}. Let
A be the stabilizer in M4 of d and {p, q}, and let B be the stabilizer in M4
of hy, ha, and {p, q}. Then:

(i) A = Aut(Sg), while B = S¢;
(ii) A\ B contains an involution.

Proof. (i) is Lemma 2.11.7 in [Iv99] while (ii) is a well-known property of
the automorphism group of Se. O

Lemma 1.1.3 ([CCNPW)]) The following assertions hold:

(i) the outer automorphism group of May is trivial;
(ii) the Schur multiplier of M>4 is trivial. O

1.2 Todd module

The 24-dimensional space V>4 containing Cj; and identified with the power set
of P carries the structure of the G F'(2)-permutation module of M»4 acting on
‘P. With respect to this structure, C)3 is a 12-dimensional submodule known as
the Golay code module. Let V(" and V?® be the subspaces in V54 formed by
the improper and even subsets of P, respectively. Then V(! and V@ are the
M>4-submodules contained in C), and containing Cj7, respectively. Put

Ci1 = C12/V(1) and CTI = V(23)/C12.

The elements of Va4/ VD are the partitions of P into pairs of subsets. There
are two Mp4-orbits on Cy; \ {0}. One of the orbits consists of the partitions
involving octads and other one the partitions into pairs of complementary do-
decads. Acting on C{, \ {0}, the group M>4 also has two orbits, this time indexed
by the pairs and the sextets

IC11l = 14759 4+ 1288; |Cf,| =14276+41771.

Already from this numerology it follows that both C;; and Cf, are irreducible
and not isomorphic to each other. The modules Cy; and C},; are known as the
irreducible Golay code and Todd modules of M4, respectively.

Since C); is totally singular and V() is the radical of b, the bilinear form b
establishes a duality between C2 and C}, and also between C;; and Cj;. Since
M>4 does not stabilize non-zero vectors in C{,, the latter is indecomposable.
Because of the dually, C;» is also indecomposable.
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Lemma 1.2.1 The series
0<v® < Cia < v - Voa
is the only composition series of Vo4 considered as the module for M»4.

Proof. We have seen that the above series is indeed a composition series.
Since both Cj2 and Cy, are indecomposable, in order to prove the uniqueness
it is sufficient to show that Va4/ V1) does not contain C}, as a submodule.
Such a submodule would contain an Mp4-orbit X indexed by the pairs from
P. On the other hand, by the 5-fold transitivity of M4 on P, the stabilizer of
a pair stabilizes only one proper partition of P (which is the partition into the
pair and its complement). Therefore, X has no choice but to consist of all such
partitions. But then X would generate the whole of V23 /V () which proves
that X does not exist. O

If K is a group and U is a GF(2)-module for K, then H!'(K, U) and
H?(K, U) denote the first and the second cohomology groups of U. Each of
these groups carries a structure of a G F(2)-module, in particular it is ele-
mentary abelian. The order of H!(K, U) is equal to the number of classes of
complements to U in the semidirect product U : K of Uand K (with respect to
the natural action), while the elements of H2(K, U) are indexed by the isomor-
phism types of extensions of U by K with the identity element corresponding
to the split extension U : K. If W is the largest indecomposable extension of U
by a trivial module, then W/U = H'(K, U) and all the complements to W in
the semidirect product W : K are conjugate and H LK, W) is trivial. Dually,
if V is the largest indecomposable extension of a trivial module Vy by U, then
Vi = H'(K,U*) (here U* is the dual module of U)

Lemma 1.2.2 The following assertions hold:

(i) H'(Maa, C1y) is trivial;
(ii) H*(Mag, C1y) is trivial;
(iii) H'(Mas, C})) has order 2;
(iv) H*(M>a, C{)) has order 2. O

Proof. The first cohomologies were computed in Section 9 in [Gri74]. The
second cohomologies calculations are commonly attributied to D.J. Jackson
[Jack80] (compare [Th79a]). All the assertions were rechecked by Derek Holt
using his computer package for cohomology calculating. O

In view of the paragraph before the lemma, by (ii) every extension of Cj
by M4 splits; by (i) all the Mo4-subgroups in the split extension C11 : Moy
are conjugate; by (iv) there exists a unique non-split extension (denoted by



