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PREFACE

This text is designed to provide the mathematical concepts required in
today’s undergraduate business administration curriculum. Typically the
algebra backgrounds of the students taking these courses are varied.
Thus, one of my goals has been to make the text as readable as possible
without sacrificing its mathematical content.

Another goal of this text is to train the student to think graphically.
Accordingly, | have included sections in Chapter 2 on graphing
polynomial and rational functions and in Chapter 3 on graphing
exponential functions. These sections are also designed to prepare the
student for calculus. Since a calculus student is often sketching and
working with higher degree polynomial functions, rational functions, and
exponentials and logarithmic functions, a prior study of these topics will
help to reduce their “shock effect” when encountered in calculus.

This text contains a more thorough coverage of mathematics of
finance in response to managements’ express needs. Feedback from
management professionals indicates that this is the mathematical topic
requiring more extensive coverage in undergraduate studies. Many
business decisions involve an analysis of cash flows under various
conditions. This text includes, in addition to the usual mathematics of
finance topics, equations of value, deferred annuities, and complex
annuities.

Since we live in an age of inexpensive computing, greater
emphasis is placed upon problem formulation. In this regard, | have
included one section (Section 6—8) at the end of Chapter 6 (Linear
Programming) on formulating linear programming problems from
various fields of application.

Chapter 7 (Probability) provides the instructor with many options.
The section on Bayes’ formula may be omitted if desired. Similarly,
Section 7—7 (Counting, Permutations, Combinations, and Probability)
may be omitted, as well as the sections on Markov chains, if time does
not permit their treatment.

The calculus chapters are designed to provide the student with
essential concepts and viable applications. Chapter 8 presents an
intuitive approach to the concepts of average rate of change and
instantaneous rate of change. These serve as the structural foundation
for the “‘rate of change’” and “’slope of tangent line’’ concepts of the
derivative. The “Limits”’ and “’Differentiability and Continuity’’ topics
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have been placed in separate sections so that the instructor has the
flexibility to choose the level of treatment of these topics.

The chapter on optimization stresses both graphics and
problem-solving. Applications to real-world problems accompany the
calculus concepts.

Applications appear at numerous places in the calculus chapters as
they do throughout the text. Section 10—8 (Continuous Cash Flows)
attempts to integrate these financial models with those presented in the
Mathematics of Finance chapter. In this regard, the Improper Integrals
section contains an application to the present value of a perpetual cash
flow. Finally, continuous probability distributions are presented as an
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a continuous probability distribution for germination in future courses.

We have six business cases in this text. Each is intended to show
how math techniques are actually applied to business problems to solve
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CHAPTER ONE

THE REAL
NUMBERS

All the numbers we will use in this text can be represented as
points on a straight line. Such a represeritation can be constructed
as follows. Begin with a straight line. Choose an arbitrary point,
called the origin, on the line and label it 0. Then choose another
point to the right of 0 and label it 1. Let the distance between 0 and
1 represent 1 unit of measure (see Figure 1—1). The point on the
straight line 1 unit to the right of 1 is labeled 2, the point 1 unit to
the right of 2 is labeled 3, etc. (see Figure 1-2). Also, the point on
the straight line 1 unit to the left of 0 is labeled —1, the point 1 unit
to the left of —1 is labeled —2, the point 1 unit to the left of —2 is
labeled —3, etc. (see Figure 1-2). The straight line of Figure 1-2 is
called the real number line. There is a one-to-one corre-
spondence between the points on the real number line and the set
of real numbers. In other words, any real number is associated
with some point on this number line. Also, any point on this num-
ber line is associated with some real number. For example, the
fraction 1/2 is associated with the point midway between 0 and 1;
the number 1% is associated with the point three-quarters of the
distance between 1 and 2; and the number —1/3 is associated with
the point one-third the distance between 0 and —1 (see Fig-
ure 1-3).

! 1
T T

y

0 1
1 unit
distance
FIGURE 1-1
+ t + + t + —
-3 2 1 0 1 2 3
FIGURE 1-2
+ } + +»—+ g + +—+ +—
_ 1 1 3
-3 2 1 3 0 > 1 14 2 3
FIGURE 1-3

There are several types of real numbers:
1. Counting Numbers (also called natural numbers):

1,2,3,4,5,. . .%
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2. Whole Numbers:
0,1,2,3,4,. . .*%
3. Integers:
... —4,-3,-2,-1,0,1,2,3,4,. ..

4. Rational Numbers—AIl numbers that can be expressed as a
quotient of two integers, where the denominator is not equal
to 0. Examples are numbers such as 1/2, 3/4, 4/1, 3, 1.23, and
nonterminating repeating decimals such as 5.838383 . . .,
which can be written as 5.83.

5. Irrational Numbers—AlIl real numbers that are not rational.

Irrational numbers have decimal representations that are non-
terminating and nonrepeating. Some examples are:

V2 = 1.4142135 . . .**

3.1415926 . . .
e=2718281. . .

—-V6 = -2.2360679 . . .

m

Thus, a real number is either rational or irrational. The rational
numbers include the integers, the integers include the whole hum-
bers, and the whole numbers include the counting or natural num-
bers.

If a number a lies to the left of a number b on the real number line,
then “a is less than b.” This is written a < b (see Figure 1-4).
Also, if a number b lies to the right of a number a on the real num-
ber line, then ““b is greater than a.” This is written b > a (see Fig-
ure 1-5). Thus, the statement 5 is less than 6" is written 5 < 6.

— t >

a

a<bhb

FIGURE 1-4

\J

FIGURE 1-5

*Here, the three dots indicate that the numbers continue indefinitely in the same

manner.
**These dots indicate that the decimal representations are nonterminating.
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The inequality phrases and their respective symbols are sum-
marized as follows:

Inequality Phrase

“Is less than”

/ “Is greater than”
“Is less than or equa

“Is greater than or eq
“Is not equal to”"

Sometimes, it is necessary to refer to all real numbers located
between two numbers a and 6 on the real number line (see
Figure 1—6). Such a set of numbers is called an interval and is ex-
pressed as all real numbers x such that

a<x<ya

Observe that the endpoints, a and b, are not included in the above
interval. This situation is graphically expressed by using an open
circle at each endpoint (see Figure 1—6). If the endpoints are to be
included, then the set must be written as

asx=»b

and graphically expressed by using a solid circle at each endpoint
(see Figure 1-7).

\J

FIGURE 1-6
2 ® >
a b
X /
FIGURE 1-7

EXAMPLE 1-1 Graph all real numbers x such that
5b=x=10.
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Solution This interval includes all real numbers between 5
and 10. The endpoints are included. The graph appears in
Figure 1-8.

0 5 10

FIGURE 1-8

EXAMPLE 1-2 Express the interval of Figure 1-9 by using
the variable x.

Vo — )
A\ A4

\J

—
-7 -3 0
FIGURE 1-9

Solution This interval includes all real numbers between —7
and —3. The endpoints are not included. Hence, the interval is
written as all real numbers x such that -7 < x < —3.

EXAMPLE 1-3 Graph all real numbers x such that x < 9.
Solution This interval includes all real numbers less than or
equal to 9. The endpoint, 9, is included. The graph appears in
Figure 1-10.

+— *— >
0 9

s
a

x =9
FIGURE 1-10

Absolute Value The absolute value of a number x, written | x|, is the distance on
the real number line from 0 to x. Thus, the absolute value of —3,
written |—3|, is 3 since the distance from 0 to —3 is 3 units (see
Figure 1-11). Also, the absolute value of 3, written |3, is 3 since
the distance from 0 to 3 is 3 units (see Figure 1-12). Note that the
absolute value of a number is always nonnegative.
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3 units
distance

3

FIGURE 1-11

\J

\J

3 units
distance

3 3

FIGURE 1-12

EXAMPLE 1-4  gsolve for |-7].

Solution | -7| = 7 since the distance between 0 and —7 on
the real number line is 7 units.

EXAMPLE 1-5 Solve for |8].

Solution |8| = 8 since the distance between 0 and 8 on the
real number line is 8 units.

EXAMPLE 1-6 Graph all real numbers x such that
|x| =5 on the real number line.

Solution This interval includes all numbers x on the real
number line such that the distance between 0 and x is less
than or equal to 5. Thus, any real number x within 5 units dis-
tance of 0 has an absolute value less than or equal to 5.
Hence, we write

-b=x=5

This interval is graphed in Figure 1-13.

= t >
-5 0 5

FIGURE 1-13

EXERCISES

1.

State whether each of the following is true or false:

(A) 3<7 (B) —-3< -7 (C) —-2< -5
(D) 2<5 (E) -6< -2 (F) -3>-7
(G) —-2> -5 (H 0<5 n o0>-3

(J) 9>6 (K) 8>10 (L) -6< -1
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2. State whether each of the following is true or false:
(A) Every counting number is a whole number.
(B) Every whole number is an integer.
(C) Every counting number is an integer.
(D) Every integer is a rational number.
(E) Every rational number is a real number.
(F) Every integer is a whole number.
(G) Every whole number is a counting number.
(H) Every irrational number is a real number.

3. State whether each of the following is true or false:
(A) 7 is arational number.

(B) gis a rational number.

(C) - § is a rational number.

(D) V11is a rational number.
(E) V11 is an irrational number.

(F) 3.56345. . .is an irrational number.
(G) 4.7065 is an irrational number.
(H) 2.767676 . . .is a rational number.
4. Sketch each of the following on the real number line:
(A) —-5=x=-1 B) 7=x=11
(C) —-d4<x<-2 (D) 9<x<15
(E) -3<x=2 (F) 2=x<9
(G) 5=x (Hl x=5
 x=-3 J) x<10
(K) x>-2 L) x>4
(M) 2<x (N) x=-1
(0) x#2 (P) x=-3,x%5
5. Solve for each of the following:
(A) o] (B) |-1] € |1
(D) |-21] (E) |-2| (F) |15]
(G) |-15] (H) |-20| (|20
6. Sketch each of the following intervals on the real number line:
(A) |x| =4 (B) [x|<8
(C) |x| =10 (D) |x| <10
(E) |x|=6 (F) |x|>6
(G) |x| =5 (H |x| =3

FUNCTIONS

A function is a rule that associates a unique output value with each
element in the set of possible input values. Consider, for example,
the conversion of temperature from degrees Fahrenheit to degrees
Celsius. Given a temperature in degrees Fahrenheit (input value),
we can find the corresponding value in degrees Celsius (output
value) by the following rule:
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Functional
Notation

Celsius temperature = g (Fahrenheit temperature — 32)

output input
value value

If C is temperature in degrees Celsius and F is temperature in de-
grees Fahrenheit, then this rule may be expressed by the equation

~ 2 -
C=g(F-32

To determine the Celsius temperature (output value) associated
with 50 degrees Fahrenheit, we substitute £ = 50 (input value) into
the equation and obtain

Thus, 10 degrees Celsius is associated with 50 degrees Fahrenheit.
Since only one value of C is associated with a value of £, then this
equation defines C as a function of F£.

Observing the equation

_ S
C=glF-32)

T T

output input
value value

note that the output value, C, is dependent upon the input value,
F. Thus, C is called the dependent variable, and F is called the
independent variable. This relationship is usually indicated by
saying that C is a function of F.

Often, a letter is used to represent a function. Specifically, if the let-
ter f is used to name the function defined by the equation

~

y =bx2+ 2x + 7

then the dependent variable, y, is represented by the symbol f(x),
read “f of x.”” Thus, the preceding equation is written as

f(x) =5x%2+2x +7

To find the output value associated with x = 3, we replace x with 3
to obtain



