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Preface

This book is a slightly extended elaboration of a course on commutative ring
theory and plane algebraic curves that I gave several times at the Univer-
sity of Regensburg to students with a basic knowledge of algebra. I thank
Richard Belshoff for translating the German lecture notes into English and
for preparing the numerous figures of the present text.

As in my book Introduction to Commutative Algebra and Algebraic Geom-
etry, this book follows the philosophy that the best way to introduce commu-
tative algebra is to simultaneously present applications in algebraic geometry.
This occurs here on a substantially more elementary level than in my earlier
book, for we never leave plane geometry, except in occasional notes without
proof, as for instance that the abstract Riemann surface of a plane curve is
“actually” a smooth curve in a higher-dimensional space. In contrast to other
presentations of curve theory, here the algebraic viewpoint stays strongly in
the foreground. This is completely different from, for instance, the book of
Brieskorn-Knérrer [BK], where the geometric-topological-analytic aspects
are particularly stressed, and where there is more emphasis on the history
of the subject. Since these things are explained there in great detail, and with
many beautiful pictures, I felt relieved of the obligation to go into the topolog-
ical and analytical connections. In the lectures I recommended to the students
that they read the appropriate sections of Brieskorn-Knorrer [BK]. The book
by G. Fischer [F| can also serve this purpose.

We will study algebraic curves over an algebraically closed field K. Tt is
not at all clear a priori, but rather to be regarded as a miracle, that there
is a close correspondence between the details of the theory of curves over C
and that of curves over an arbitrary algebraically closed field. The parallel
between curves over fields of prime characteristic and over fields of charac-
teristic 0 ends somewhat earlier. In the last few decades algebraic curves of
prime characteristic made an entrance into coding theory and cryptography,
and thus into applied mathematics.

The following are a few ways in which this course differs from other in-
troductions to the theory of plane algebraic curves known to me: Filtered
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algebras, the associated graded rings, and Rees rings will be used to a great
extent, in order to deduce basic facts about intersection theory of plane curves.
There will be modern proofs for many classical theorems on this subject. The
techniques which we apply are nowadays also standard tools of computer al-
gebra.

Also, a presentation of algebraic residue theory in the affine plane will be
given, and its applications to intersection theory will be considered. Many of
the theorems proved here about the intersection of two plane curves carry over
with relatively minor changes to the case of the intersection of n hypersurfaces
in n-dimensional space, or equivalently, to the solution sets of n algebraic
equations in n unknowns.

The treatment of the Riemann—Roch theorem and its applications is based
on ideas of proofs given by F.K. Schmidt in 1936. His methods of proof are
an especially good fit with the presentation given here, which is formulated
in the language of filtrations and associated graded rings.

The book contains an introduction to the algebraic classification of plane
curve singularities, a subject on which many publications have appeared in
recent years and to which references are given. The lectures had to end at some
point, and so resolution of singularities was not treated. For this subject I refer
to Brieskorn—-Knorrer or Fulton [Fu]. Nevertheless I hope that the reader will
also get an idea of the problems and some of the methods of higher-dimensional
algebraic geometry.

The present work is organized so that the algebraic facts that are used
and that go beyond a standard course in algebra are collected together in
Appendices A-L, which account for about one-third of the text and are re-
ferred to as needed. A list of keywords in the section “Algebraic Foundations”
should make clear what parts of algebra are deemed to be well-known to the
reader. We always strive to give complete and detailed proofs based on these
foundations

My former students Markus Niibler, Lutz Pinkofsky, Ulrich Probst, Wolf-
gang Rauscher and Alfons Schamberger have written diploma theses in which
they have generalized parts of the book. They have contributed to greater
clarity and better readability of the text. To them, and to those who have
attended my lectures, I owe thanks for their critical comments. My colleague
Rolf Waldi who has used the German lecture notes in his seminars deserves
thanks for suggesting several improvements.

Regensburg
December 2004 Ernst Kunz



Conventions and Notation

(a)
(b)

By a ring we shall always mean an associative, commutative ring with
identity.

For a ring R, let Spec R be the set of all prime ideals p # R of R (the
Spectrum of R). The set of all maximal (minimal) prime ideals will be
denoted by Max R (respectively Min R).

A ring homomorphism p : R — S shall always map the identity of R to
the identity of S. We also say that S/R is an algebra over R given by p.
Every ring is a Z-algebra.

For an algebra S over a field K we denote by dimg S the dimension of S
as a K-vector space.

For a polynomial f in a polynomial algebra R[X,,..., Xy, we let deg f
stand for the total degree of f and deg x, [ the degree in X;.

If K is a field, K(X,...,X,) denotes the field of rational functions in
the variables X1,..., X,, over K (the quotient field of K[Xy,...,X,)).
The minimal elements in the set of all prime ideals containing an ideal I
are called the minimal prime divisors of I.
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Affine Algebraic Curves

This scction uses only a few concepls and facts from algebra. It assumes a certain
icular that K[X]
s a principal ideal domain, and thal K[Xy. ..., . X, ] is a unique factorization domain
in general. Also, ideals and quotient rings will be used. Finally, one must know that

Jamiliarity with polynomial rings K[Xy,.. ... N | over a field, in par

an algebraically closed ficld has infinitely many elements.

We will study algebraic curves over an arbitrary algebraically closed field K.
Even if one is only interested in curves over C, the investigation of the Z-
rational points of curves by “reduction mod p” leads into the theory of curves
over fields with prime characteristic p. Such curves also appear in algebraic
coding theory (Pretzel [P], Stichtenoth [St]) and eryptography (Koblitz [K],
Washington [W]).

A%(K) := K? denotes the affine plane over A, and K[X.,Y] the polynomial
algebra in the variables X and Y over K. For f € K[X,Y], we call

V(f) = {(r,y) € A*(K) | f(x,y) =0}

the zero set of f. We set D(f) == A?(K)\ V([) for the set of points where f
does not vanish.

Definition 1.1. A subset I C A%(K) is called a (plane) affine algebraic curve
(for short: curve) if there exists a nonconstant polynomial [ e K[X,Y] such
that I" = V(f). We write I': f = 0 for this curve and call f = 0 an equation
for T.

If Ko C K is a subring and I = V() for a nonconstant polynomial
J € Ko[X. Y], we say that I" is defined over Ky and call T := I'N I\’g the set
of Ko-rational points of 1.

Examples 1.2.

(a) The zero sets of linear polynomials a X + bY + ¢ = 0 with (a,b) # (0,0)
are called lines. If Ky € K is a subfield and a,b.¢ € Ky, then the line
g :aX +bY 4 ¢ = 0 certainly possesses Kj-rational points. Through two
different points of A%(Ky) there is exactly one line (defined over Ky).

(b) If I, ..., I, are algebraic curves with equations f; = 0 (i = 1,...,h),
then 1" := U | I is also an algebraic curve. It is given by the equation

H,’:l fi = 0. In particular. the union of finitely many lines is an algebraic
curve (see Figure 1.1).
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Fig. 1.1. The union of finitely many lines is an algebraic curve.

(c) Let I' = V(f) with a nonconstant f € K[Y] (so f does not depend on X).
The decomposition of f into linear factors

f=c || —a) (ce K*:= K\ {0}, a1,...,aq € K)

1

d
i=

shows that I" is the union of lines g; : Y — a; = 0 parallel to the X-axis.
(d) The zero sets of quadric polynomials

f=aX?+bXY+cY?+dX+eY+g  (a,b,...g € K; (a,b,¢) # (0,0,0))

are called quadrics. In case K = C, Ky = R we get the conic sections,
whose R-rational points are shown in Figures 1.2 through 1.5. Defined

Y
N /"

Fig. 1.2. Ellipse: %22_ 4 %;. =1, Fig. 1.3. Hyperbola: %‘; — %22- =1,
(a,b e Ry) (a,b€Ry)

Fig. 1.4. Parabola: Y = aX?, Fig. 1.5. Line pair: X2 -Y2=0

(a € R+)
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as sections of a cone with a plane, they were thoroughly studied in an-
cient Greek mathematics. Many centuries later, they became important
in Kepler’s laws of planetary motion and in Newton’s mechanics. Unlike
the R-rational points, questions about the Q-rational points of quadrics
have, in general, nontrivial answers (cf. Exercises 2-4).

(e) The zero sets of polynomials of degree 3 are called cubics. The R-rational
points of some prominent cubics are sketched in Figures 1.6 through 1.9.
Cubic curves will be discussed in 7.17 and in Chapter 10.

Fig. 1.6. Neil’s semicubical parabola: Fig. 1.7. Folium of Descartes:
X =3 =0 XP+X?-Y?=0

v

Fig. 1.9. Elliptic curve in Weierstraf3
Fig. 1.8. Cissoid of Diocles: normal form (e1 < ez < es real):
Y?(1-X)-X*=0 Y? = 4(X —e1)(X — e2)(X —e3)

= N

(f) Some curves with equations of higher degrees are sketched in Figures 1.10
through 1.15. For the origin of these curves and the others indicated above,
one can consult the book by Brieskorn-Knorrer [BK]. See also Xah Lee’s
“Visual Dictionary of Special Plane Curves” http://xahlee.org, and the
“Famous Curves Index” at the MacTutor History of Mathematics archive
http://www-history.mcs.st-and.ac.uk/history.

(g) The Fermat curve F,, (n > 3) is given by the equation X" + Y™ = 1. It
is connected with some of the most spectacular successes of curve theory
in recent years. Fermat’s last theorem (1621) asserted that the only Q-
rational points on this curve are the obvious ones: (1,0) and (0,1) in
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Fig. 1.10. Lemniscate: Fig. 1.11. Conchoid of Nichomedes:
X21-X%)-Y2=0 (X2+YH(X-1)°-X?>=0

Fig. 1.13. Union of two circles:
Fig. 1.12. Cardioid: (X2—4)2 4+ (Y2—9)2+2(X2+4)(Y? -

(X2 4+Y24+4Y)? -16(X*+Y?) =0 || 9)=0

Fig. 1.14. Three-leaf rose: Fig. 1.15. Four-leaf rose:
(X7 +Y?)? +3X°Y -Y® =0 X% 5 7of — 4xBy®

case n is odd; and (£1,0), (0,£1) in case n is even. G. Faltings [Fal
in 1983 showed that there are only finitely many Q-rational points on
F,,, a special case of Mordell’s conjecture proved by him. In 1986 G. Frey
observed that Fermat’s last theorem should follow from a conjecture about
elliptic curves (the Shimura—Taniyama theorem), for which Andrew Wiles
(see [Wi], [TW]) gave a proof in 1995, hence also proving Fermat’s last
theorem. These works are far beyond the scope of the present text. The
reader interested in the history of the problem and its solution may enjoy
Simon Singh’s bestselling book Fermat’s last theorem [Si].

Having seen some of the multifaceted aspects of algebraic curves, we turn
now to the general theory of these curves. The examples X2 +Y? = 0 and
X2+ Y2+ 1 = 0 show that the set of R-rational points of a curve can be
finite, or even empty. For points with coordinates in an algebraically closed
field, however, this cannot happen.
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Theorem 1.3. Every algebraic curve I' C A%(K) consists of infinitely many
points, and also A?(K)\ I" is infinite.

Proof. Let I' = V(f) with f = ap + a1 X + --- 4+ a, X?, where a; € K[Y]
(1 =0,...,p) and a, # 0. If p = 0, we are in the situation of Example 1.2
(c) above, and since an algebraically closed field has infinitely many elements,
there is nothing more to be shown. Therefore, let p > 0. Since a, has only
finitely many zeros in K, there are infinitely many y € K with a,(y) # 0.
Then

f(X,y) =aoly) + ar(y) X + -+ ap(y) X

is a nonconstant polynomial in K[X]. If x € K is a zero of this polynomial,
then (z,y) € I'; therefore, I' contains infinitely many points. If x € K is not

a zero, then (z,y) € D(f), and therefore there are also infinitely many points
in A2(K)\ I

An important theme in curve theory is the investigation of the intersection
of two algebraic curves. Our first instance of this is furnished by the following
theorem. It assumes a familiarity with unique factorization domains.

Theorem 1.4. Let f and g be nonconstant relatively prime polynomials in
K[X,Y]. Then

(a) V(f) N V(g) is finite. In other words, the system of equations
f(X,Y)=0, ¢g(X,Y)=0

has only finitely many solutions in A%(K).
(b) The K-algebra K[X,Y]/(f,g) is finite-dimensional.

For the proof we will use

Lemma 1.5. Let R be a UFD with quotient field K. If f,g € R[X] are rela-
tively prime, then they are also relatively prime in K[X|, and there exists an
element d € R\ {0} such that

d=af + bg
for some polynomials a,b € R[X].

Proof. Suppose that f = ah, g = Sh for polynomials «, 8, h € K[X], where h
is not a constant polynomial. Since any denominators that appear in A may
be brought over to a and 3, we may assume that h € R[X]. We then write

(X:Z()Q‘Xi, [)’:Z@Xj (Oéi,ﬂj EK).

Let 6 € R\ {0} be the least common denominator for the a; and 3;. Then we
have

of = oh, 0g = h



