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Preface

This monograph presents a collection of results, observations, and examples
related to dynamical systems described by linear and nonlinear ordinary
differential and difference equations. In particular, dynamical systems that
are susceptible to analysis by the Liapunov approach are considered. The
naive observation that certain “diagonal-type” Liapunov functions are
ubiquitous in the literature attracted the attention of the authors and led to
some natural questions. Why does this happen so often? What are the spe-
cial virtues of these functions in this context? Do they occur so frequently
merely because they belong to the simplest class of Liapunov functions and
are thus more convenient, or are there any more specific reasons?

This monograph constitutes the authors’ synthesis of the work on this
subject that has been jointly developed by them, among others, producing
and compiling results, properties, and examples for many years, aiming to
answer these questions and also to formalize some of the folklore or “cul-
ture” that has grown around diagonal stability and diagonal-type Liapunov
functions.

A natural answer to these questions would be that the use of diagonal-
type Liapunov functions is frequent because of their simplicity within
the class of all possible Liapunov functions. This monograph shows that,
although this obvious interpretation is often adequate, there are many in-
stances in which the Liapunov approach is best taken advantage of using
diagonal-type Liapunov functions. In fact, they yield necessary and suffi-
cient stability conditions for some classes of nonlinear dynamical systems.
In other words, in many cases a diagonal-type function represents “the far-
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thest one can go” with the Liapunov approach and has the added virtue of
simplicity.

Strongly related to these diagonal-type Liapunov functions are several
classes of matrices that, in most cases, describe the interconnection struc-
ture of associated dynamical systems. Chapter 2 is devoted to a discussion
and presentation of the basic results for these classes of matrices; the most
important being the so-called class of diagonally stable matrices. It is
shown at different places in the book that in many cases the necessary
and sufficient conditions for stability of nonlinear systems are, surprisingly,
necessary and sufficient conditions for diagonal stability of a certain matrix
associated to the nonlincar system.

There is also a strong correlation between these classes of matrices and
the robustness of the dynamical systems that they are associated with. The
results in Chapter 3 and the examples presented, in Chapters 4, 5, and 6,
that range from neural networks and computation to passive circuits and
mathematical ecology confirm this correlation.

Thus, loosely speaking, the unifying theme of this monograph is the
presence and role of “diagonal stability” and the associated diagonal-type
Liapunov functions in various stability aspects of certain, fairly widespread,
classes of dynamical systems. Of course, there is no claim to completeness,
either in terms of theoretical results on matrix diagonal and D-stability
or in terms of applications; however, there is an extensive bibliography of
over three hundred items. Reviewers and colleagues have often pointed out
that the terms diagonal and D-stability are somewhat imprecise. However,
a search made in any one of the science and technology databases, such
as INSPEC or ISI’s Web of Science, reveals hundreds of papers that use
these terms. Thus the authors feel that it is justifiable to bow to tradi-
tion and continue to use these “traditional” terms in preference to the
alternatives proposed in the literature (e.g., Volterra-Liapunov stability,
Arrow-McManus stability, D* L-stab, D*-stab, etc.).

Many applications of diagonal and D-stability are commented on in the
sections entitled Notes and References that end every chapter and can be
regarded as pointers to most of what is not touched upon in the book.
These Notes also indicate and discuss the sources consulted; some others
that are closely related, but have not been embedded in a deeper discussion
in the text, are also included. It should also be pointed out that some long
or uninformative proofs have been omitted in the interests of readability.
Once again, the notes at the end of each chapter indicate where these may
be found.

It is the authors’ belief that the target public at which this monograph
is aimed consists of graduate students and researchers in the fields of con-
trol, stability of dynamical systems, and convergence of algorithms, and
that they would benefit from the contents of this book. Readers with inter-
disciplinary interests will also benefit from the wide range of topics from
different disciplines that are included in the examples treated. The results
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presented are not all new, although almost all have been derived within the
last two decades. The novelty of this book resides mainly in the unifying
perspective provided by the matrix stability formulation of the results—in
particular, matrix diagonal stability and its variants. Evidence that there is
still something to be gained from this vantage point is given by the fact that
interesting new results continue to crop up, as has been the case recently,
for example, with neural networks and variable structure systems.

Familiarity with linear algebra and matrix theory, as well as difference
and differential equations, is the mathematical background expected from
the reader of this book. A prior knowledge of systems and control theory,
including Liapunov stability theory, is also expected, at least in sufficient
measure to provide motivation for the problems studied. Fortunately, there
are many excellent books that cover this background—more details are
given in the Notes and References to Chapter 1. For the reader who has
a mathematical background but lacks a control background, the authors
recommend a quick look at the introductory Section 1.1, which gives an
overview of the book, with an attempt to explain control-related jargon to
the uninitiated reader, as well as the appendices to Chapters 2 and 3, which
review Liapunov and Stein equations and stability theory, respectively.

A word on notation is in order here: the Halmos symbol B indicates, as
usual, the end of a proof of some mathematical assertion (lemma, proposi-
tion, theorem, etc.), whereas an “empty Halmos” O indicates the end of the
statement of some mathematical assertion that will not be proved explicitly
in the book, either because its proof is implicit in the preceding discussion
or because it will take the reader too far afield. In the latter case, “chapter
and verse” citation of a reference where the proof may be found is given.
Numbering of items as well as other notation is standard enough not to
merit special mention here.

The authors would like to acknowledge the persons, agencies and insti-
tutions that directly and indirectly contributed to the realization of this
monograph. Professor Siljak for his interaction with both authors, prin-
cipally the first author during a sabbatical at Santa Clara University;
Professor Liu Hsu for having initiated, together with EK, the early ef-
forts in this area; Professors Biswa Nath Datta and Carlos S. Kubrusly
for having enthusiastically encouraged the project to write this book from
the earliest days; Professors Stephen Boyd and Shankar Bhattacharyya as
well as the anonymous reviewers for having made many useful remarks on
draft versions; the Brazilian Ministry of Education, the government agen-
cies CAPES, CNPq, FINEP, and, in particular, the PRONEX program
of the Ministry of Science and Technology for having supported the re-
search of both authors over the years; the Graduate School of Engineering
(COPPE) of the Federal University of Rio de Janeiro (UFRJ) for having
provided the necessary infrastructure and support for the authors’ research
over the years in which this book was written, Mara Prata for having trans-
formed the Linear B in which parts of the manuscript were written to a
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IXTEXversion and Professor Ramon Romankevicius Costa for help with the
figures. AB would like to thank his parents in India for a debt that, as he
realizes each day, is too great even to begin naming, to his sisters for un-
flagging moral support, and to his family in Rio for having stoically borne
irritability, absences, and all the other charming habits of a first-time au-
thor; special thanks to Felipe who never lost faith in “zibuk” and to a
chaotic little attractor called Asmi for thoroughly enjoyable delays, and to
Lucia and Barbara for keeping the pressure up!

Rio de Janeiro, Brazil Eugenius Kaszkurewicz
October 18, 1999 Amit Bhaya
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1

Diagonally Stable Structures in
Systems and Computation

This introductory chapter is devoted to examples that originate from differ-
ent applications and that illustrate the way in which some special classes of
dynamical systems dovetail with the concepts of matrix diagonal stability
and the associated diagonal-type Liapunov functions.

1.1 Introduction

The class of diagonal matrices has many pleasant properties and, con-
versely, if a class of matrices is required to have many such properties,
then, roughly speaking, it must be the diagonal class.

The objective of this book is to present classes of nonlinear dynamical
systems that possess a so-called “diagonally stable structure” that is priv-
ileged in an analogous manner. Furthermore, it is also shown, by means
of various examples, that this class of dynamical systems occurs in many
applications in circuits and systems, in computation using asynchronous
iterative methods, in control, and so on.

Terminology used throughout the book is now introduced. The term
dynamical system refers to a set of difference or differential equations that
determine the evolution of a vector in R™ that is also referred to as the
state vector or simply the state. The cvolution occurs in the state-space
R™ in discrete-time in the case of a difference equation and in continuous-
time in the case of a differential equation, and the path that describes this
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evolution in the state-space is referred to as a (state) trajectory or solution.

The term linear dynamical system refers to

n
acszaij:cj, = Lyosagm (1.1)
=1
where the state vector x = (z1,...,2,)T € R", the system matriz A =

(aij) € R™*", and the scalar ;" denotes dz;/dt in the continuous-time
case, or z;(t + 1) in the discrete-time case.

A linear dynamical system with an exogenous variable, referred to as a
control or input vector, is written as follows.

n m
=S et b =L (3
g=1 k=1

The adjective control used for the vector u arises from the fact that it can
be chosen so as to control the evolution in time of the state vector z(t),
Le., the trajectory of the system. In fact, in linear state feedback control,
the input vector u is chosen as a linear function of the state, u = Kz, so
that the controlled system becomes z+ = (A + BK )z, which is again in
the form of system (1.1), although the system matrix has changed from A
to A+ BK. The matrix A 4+ BK is referred to as the closed-loop system
matrix. Such a choice of a feedback matriz K is known as state feedback
stabilization when stability of the system is the desired property.
To explain the term diagonally stable, consider the matrix equations:

ATP+PA = —Q (1.3)
ATPA-P = —Q (1.4)

The equation (1.3) (respectively, (1.4)) is referred to as the Liapunov (re-
spectively Stein) equation in A. If there exist positive definite matrices P
and @ satisfying the equation (1.3) (respectively (1.4)), then the matrix
A is said to be continuous-time or Hurwitz stable (respectively discrete-
time or Schur stable). Another well known characterization of stability is
in terms of the eigenvalues of the matrix A: If all eigenvalues of A lie in
the open left half complex plane (i.e., all have negative real parts), then
A is Hurwitz stable; if all eigenvalues lie within the open unit disk in the
complex plane, then A is Schur stable. The quadratic form z7 Pz is re-
ferred to as the quadratic Liapunov function associated to system (1.1) and
traditionally denoted V(z). The stability being referred to is asymptotic
stability: Namely, if the initial condition is nonzero, the resulting trajec-
tory of (1.1) goes to the zero solution asymptotically. If the positive definite
solution P is, in addition, diagonal, then, in the continuous-time case, the
matrix A is referred to as Hurwitz diagonally stable and the quadratic form
V(z) = 27 Pz as the associated diagonal quadratic Liapunov function.
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Such diagonally stable matrices and the associated diagonal quadratic
Liapunov functions crop up in the stability analysis of a wide varicty of
systems: variable structure systems, digital filters, Lotka—Volterra systems
in mathematical ecology—to name a few examples. This is because, in these
examples, the underlying mathematical models can all be considered to be
special cases of the following set of n nonlinear differential or difference
equations:

n

g} =) ai;®ij(z,t), i=1,...,n (1.5)
j=1

where for all 7 and j, ®;; : R™ x T — R™ satisfy certain so-called sector
conditions, and, as before, ] denotes dz;/dt in the continuous-time case,
when T = R*; or z;(¢ + 1) in the discrete-time case, when T = N.

As first observed by Persidskii [Per69], for a special case of (1.5), such
models admit a class of diagonal-type Liapunov functions. These are func-
tions that are, in the simplest case, quadratic Liapunov functions of the
the type 7 Pz, where = is a vector and P a diagonal matrix, with all
diagonal entries positive, referred to briefly as a positive diagonal matrix.
More generally, these are functions that are conducive to the use of matrix
diagonal stability in proving that they decrease along the trajectories of the
dynamical system in question. A historical note appropriate here is that
the first use of a diagonal-type Liapunov function seems to have been made
by Volterra in his classic studies of fish populations in the Adriatic [Vol31].

In the discrete-time case, for the class of diagonal quadratic Liapunov
functions, a certain converse result holds for a class of linear time-varying
systems whose trajectories are the same as those of (1.5); namely, that if the
whole class of linear time-varying systems is to be stable, then the matrix
|A| := (]a;j|) must admit a diagonal solution to its Stein equation, i.e.,
must be diagonally stable. Equivalently, the class of systems in question
admits a simultaneous diagonal quadratic Liapunov function.

In several applications, a variation of the concept of diagonal stability
also arises—this is the concept of additive diagonal stability. A matrix A
is called additively diagonally stable if A + D is diagonally stable for any
nonpositive diagonal matrix D.

Informally, a dynamical system that can be written, perhaps after a
change of coordinates, in the form (1.5) with the matrix A diagonally sta-
ble, is said to possess a diagonally stable structure. There are also several
variants of equation (1.5), presented in Chapter 3, that are also suscep-
tible to analysis by diagonal-type Liapunov functions, using the concept
of additive diagonal stability, thereby broadening considerably the class of
diagonally stable structures.

Two closely related terms that are frequently used in the book to qualify
stability are robust and absolute. Both terms apply to a specified class of
dynamical systems, denoted C. Stability of a given dynamical system is
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said to be robust if all its neighbors in C, defined in some suitable sense,
are stable. The dynamical system is then said to possess the property of
robustness. A criterion is called an absolute stability condition if it ensures
that all members of the class C are stable. In this sense, absolute stability is
an extreme form of robust stability in which it is required that all members
of a class be stable, rather than just some neighborhood. Suppose, for
example, that a dynamical system S is defined for each value of a parameter
p and that C := {S(p) : p € P}, for some open set of parameters P.
Then a given dynamical system S(pg) € C is said to be robustly stable
if there is some neighborhood of pg, Np,, contained in P, such that S(p)
is stable for all p € Np,. A stability condition is said to be robust if it
guarantees the stability of a given dynamical system, usually called the
nominal system, as well as that of some set of its neighbors. An absolute
stability condition guarantees the stability of a whole class of systems.
Of course, if the whole class turns out to be exactly the set of neighbors
or vice versa, then the two definitions coincide. An interesting historical
observation is that the term absolute stability originated in the Russian
literature and still tends to be preferred in this literature. The term robust
originated around 1972 in the Western control literature, borrowed from
the statistics literature (see the preface to [Dor87]), in which it tends to
be preferred to the term absolute. Prior to 1972, the literature used terms
such as stability of uncertain systems, sensitivity or roughness of stability,
etc. An important extension of the discrete-time version of (1.5) includes
time-varying delays on the right-hand side and can be written as follows.

k +1) Z Azg z1(k),... azn(k))xj(dij (k))7 (1.6)
j=1

fori=1,2,---,n,k=0,1,2,---, and where d;;(k) € {k,k—1,k—2,---  k—
d}, for all k, for some integer d >0 and for 4,5 =1,---,n

Diagonal-type Liapunov functions also allow simple proofs of the asymp-
totic stability of neural circuits and asynchronous iterative computations
and systems with delays since the dynamical equations describing these
systems can be put in the form (1.6), with appropriate definitions of the
matrices A;;. However, for these systems, quadratic diagonal Liapunov func-
tions do not always suffice to show stability and more general diagonal-type
functions must usually be resorted to.

Diagonally stable structures arise in another context where the question
of robustness of stability can be reduced to that of the invariance of asymp-
totic stability of a certain matrix under multiplication by certain subclasses
of the class of positive diagonal matrices. In the continuous-time case, if
the stability of a given matrix A is maintained under premultiplication by a
diagonal matrix with positive diagonal entries, then A is said to be Hurwitz
D-stable and this type of matrix stability is called Hurwitz D-stability. It
was first studied in a price stability problem in the continuous-time case
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in economics. Since then applications have surfaced in a variety of fields,
but the problem of effective characterization of D-stability has so far re-
sisted solution. More details on this as well as on the connections between
diagonal and D-stability can be found in Chapter 2.

The other sections of this chapter present a series of exainples that serve
to illustrate these introductory remarks, and also to motivate the reader
to get interested in the book. Some remarks on the examples in this chap-
ter and others elsewhere in the book are worth making. Several of these
examples have been much studied in the literature and the results shown
here are not necessarily new, but are put in a perspective where certain
structural features are taken advantage of in order to get an understanding
of the solution to the problem posed in each example. To this end, simple
examples have been chosen. However, if readers encounter some difficulty
in understanding a particular example completely, they should observe that
an effort has been made to provide cross references to the chapters in which
a more complete explanation of the ideas involved in the examples is given.

1.2 Robust Stability of a Mechanical System

Consider a simple mechanical device that consists of a disc fixed to a mass-
less elastic shaft, with stiffness coefficient k, at the center. Assume that
friction is internal to the shaft. Let the damping coefficient be denoted f,
and let y; and y; represent the deflections of the disk, regarded as a particle
of mass m located at the center of the shaft. Then, in a coordinate system
rotating at the angular velocity of the shaft, the linearized equations of
motion of the device are as follows [Zie68].

mi1 + fin — 2mws + (K — mw)y 0,

miz + fy2 + 2mwy + (K — mw)y, = 0. (1.7)

Assume that the parameters are normalized so that k/m = f/m = 1 and
let z := (y1,91,¥2,92)" € R% The dynamics of this mechanical system is
written in the state-space form as follows.

dz
_ = A .
7 (w)x (1.8)
where £ € R*, the angular velocity w is considered to be a perturbation
parameter with respect to the nominal value w = 0, and the matrix A(w)
has the form below:

0 1 0 0
w2-1 -1 0 2
AW =%, @ i 4 (1.9)



