Robert G. kaenaur COBOL for

‘Q word by Gerald M. Weinberg StUdents A :

Programming
Primer -~

Little, Brown Computer Systems Series

Robert G. Finkenaur
Northeastern University

COBOL for Students:
A Programming Primer

%ﬁ%

Little, Brown and Company
Boston Toronto

Library of Congress Cataloging in Publication Data

Finkenaur, Robert G
COBOL for students.

Includes index.

1. COBOL (Computer program language) 1. Title.
QA76.73.C25F54 001.6'424 76-55362
ISBN 0-316-283207

lllustrations by Robert F. Rosenberger. Photographs by the author
except where otherwise noted.

Copyright © 1977 by Little, Brown and Company (Inc.)

All rights resetved. No part of this book may be
reproduced in any form or by any electronic or
mechanical means including information storage and
retrieval systems without permission in writing from the
publisher, except by a reviewer who may quote brief
passages in a review.

Library of Congress Catalog Card No. 76-55362
ISBN 0-316-283207
9 8 7 6 5

HAM
Published simultaneously in Canada
by Little, Brown & Company (Canada) Limited

Printed in the United States of America

Acknowledgment

The following acknowledgment is reprinted at the request of the
American National Standards Institute, Inc., from their publication, ANSI
X3.23-1974, American National Standard Programming Language
COBOL; May 10, 1974:

COBOL is an industry language and is not the property of-any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and func-
tioning of the programming system and language. Moreover, no responsibility
is assumed by any contributor, or by the Committee, in connection herewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for
the UNIVAC ® I and II, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-
8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and use
of COBOL specifications in programming manuals or similar publications.

Foreword

In the first six months following the announcement of this series, I per-
sonally was offered no fewer than eleven outlines or manuscripts for
“Introduction to COBOL.” Out of this short dozen, only one had anything
to distinguish it from the five dozen COBOL texts already published. That
one was Bob Finkenaur’s COBOL for Students.

Why does COBOL for Students represent a true contribution to pro-
gramming education? Isn’t the field adequately covered by the three score
texts already in use? Although there are some rather good texts among
them, the weaknesses of these existing texts provide the best explanation of
the strengths of COBOL for Students.

A leading weakness of introductory texts in all languages is their lack
of attention to the tenets of good programming style. As a result, some fairly
undisciplined programming habits are being taught to students. Kernighan
and Plauger, in their Elements of Programming Style (McGraw-Hill,
1974), literally shredded scores of examples from FORTRAN and PL/I texts,
and could find but two authors with whom they were reasonably satisfied.
They have promised to do the same with COBOL texts, and there the shred-
ding job should prove even easier. Finkenaur’s text and its examples, how-
ever, will stand up well to critical examination from most real pro-
grammers. Students are admonished repeatedly that their programs must
be written in a style that makes them easily understood and contributes to
the ease of their later, inevitable modification. The text's programs demon-
strate by example how this is accomplished. The disciplined programming
style espoused by this text will leave students well equipped to graduate
into the realm of structured programming and the other advanced topics
covered in the field’s more rigorous literature. It is, for example, completely
consistent in spirit with the stylistic approach of the more advanced COBOL
text in our series, High Level COBOL Programming, making COBOL For
Students a perfectly suitable introduction for students who might later use
that book.

The most serious failing of most introductory texts, however, is the
author’s “inability to put [himself] in the readers’ shoes and write for the
average beginner. Too many books seem to have been written with the top
student in mind, by authors who either don’t realize that most readers are
starting at zero, or who seem to assume that the reader is as smart as the

X

Foreword xi

writer.*” Programming is a subject whose full depth has never yet been
explored. In writing an introduction to such a deep subject, the author must
have an exquisite sense of when to stop exploring and when to start explain-
ing. He must resist the temptation to write a knowing side remark that will
impress his colleagues on the tenure board, but will befuddle hundreds of
students. He must know when a simplified discussion teaches better than
the full gory details, and when saying nothing is better than saying anything
at all. Finkenaur, for example, in describing each COBOL program compeo-
nent, wisely chooses to describe it only in its most commeonly used form and
avoids obscuring its central purpose and usefulness with long lists of sel-
dom used options and seldom violated restrictions.

The level of COBOL for Students is right for its audience—beginning
students. Some of the programs won’t achieve high marks for sophistica-
tion, yet the truly sophisticated reader will appreciate that their simplicity is
the conscious result of a dedication to effective communication.

It’s not enough, unfortunately, to be dedicated to effective communi-
cation. If that were all there was to it, we’d have sixty wonderful versions of
“Introduction to COBOL”—fifty-nine, at least. To write an effective text,
one must be able to write. Many of the introductory COBOL texts would
make excellent casebooks for a freshman English class—providing an
abundance of material to be rewritten into effective language. How can one
teach programming style when one is unable to write English with any style
at all? COBOL for Students convinces any skeptic that good writing and
good programming are not separate subjects.

Another common failing of introductory texts is in the examples. Pub-
lishers commonly boast of the number of examples in a text, as if to substi-
tute for the missing quality. The experienced teacher who studies Fink-
enaur’s examples will see that each one has a purpose that is specific,
significant, and unique. Taken together, the examples cover the subject—
but don’t bury it.

How does an author arrive at such an ideal set of examples—both for
the text and the problem sets? In practice, there can be but one way:
through attempting to teach, failing to teach, developing examples to rem-
edy the failure, and testing the examples in actual teaching. Behind each of
Finkenaur’'s examples, there is a former student somewhere who-didn’t un-
derstand something—and raised a hand about it. For a book developed in
this humble and interactive manner, what title could be more appropriate
than COBOL for Students?

The teacher who adopts COBOL for Students will find its use full of
small pleasures. For one thing, the programs will work in most installations,
for they have been tested by machines and by many pairs of eyes. They
avoid system-dependent tricks in favor of straightforward style that will
work well in almost any sensible installation, and which will prepare a
student properly for later courses in programming. And, for those students
who will take no other programming course, COBOL for Students will not
give the common impression that programming is a game for magicians or
frustrated Tom Swift’s born seventy years too late.

* Note: The quoted material is from Stephen B. Gray’s article “34 Books on BASIC”
in the March-April 1975 issue of Creative Computing magazine.

xli Foreword

Because of the excellent examples and sensible approach, COBOL for
Students will encourage students to raise questions of significance, not bit-
picking puzzles. What a pleasure for a teacher not to have to apologize for
nonsense in a text, and to be able to concentrate on imparting the wisdom
that an excellent text can suggest, but only an excellent teacher can pro-
vide. The problems, for instance, suggest many directions that can be
treated more expansively, according to the personal taste, style, and educa-
tional philosophy of the instructor.

Some teachers may be momentarily puzzled that COBOL for Students
does not “cover”’ all of COBOL—indeed, only about half of the language
“features” are presented. Few good instructors (but, unfortunately, the
majority of textbook writers) think that complete “coverage” is an impor-
tant educational objective for an introductory course. Most teachers will be
jubilant to discover a text that doesn’t submerge students in a bath of ad-
vanced terms, technical jargon, and grammatical details—before they've
even learned to dog-paddle. No reasonable person believes that a raw stu-
dent becomes a COBOL programmer in three months or three credits.

COBOL for Students is the proper size for a first course. It doesn’t
intimidate the student with its thickness; it doesn’t flood the brain with next
semester’'s material; yet it never gives the impression that you close the
subject when you close its covers. It encourages good students to take the
next course, but doesn’t charge the one-term student for a two-term text—
either financially or intellectually.

I hope, however, that someday I will be writing a Foreword to a second
Finkenaur text—perhaps, in the Hollywood tradition, entitled COBOL for
Students II. The material is there, evolving with the fullinteraction of Bob’s
students. What we await now is a response from the readers and teachers,
telling us that they agree with our assessment of this student-oriented
approach—aor, if they disagree, giving suggestions for future editions and
SuCCessors.

Gerald M. Weinberg
Swiss National Holiday, 1976

Preface

This book was written by a person who is a teacher first and a programmer
second. It reflects an accumulation of eight years’ experience in teaching
computer programming to students of every conceivable background and
interest. My pupils have represented the full range of the academic spec-
trum: elective students and reluctant students; bright students and slow
students; easy-going liberal artists and regimented military academy
cadets; men and women; every known American minority; young full-time
day students and adult part-time evening students; and every imaginable
major: computer science, engineering, math, business, history, music, as-
tronomy, geology, nursing, physical education, psychology, library science,
English, actuarial science, and military science.

Thanks to my students, I have never been allowed to forget that pro-
gramming does not come easily to everyone. What is responsible for the dif-
ficulty many students experience in mastering the art of programming a
computer?

To be sure, there is the question of “knack.” Each of us is stronger in
certain talents than in others. You probably know someone who is a good
athlete, and someone else who is completely devoid of hand-to-eye coordina-
tion and couldn’t be taught to play any sport well no matter how many
lessons were taken. Yet the latter might be a respectable musician, while
the former may not have any musical talents at all, and no amount of music
lessons could ever change that. Likewise, there are some who find them-
selves lacking in the “knack” of organizing their thoughts in the manner
necessary to master computer programming with ease, and nothing short of
their own superhuman effort will ever make programmers of them.

Another source of difficulty is the manner in which the material is
presented. All too often, the teacher of computer programming or the author
of programming textbooks is a programmer first and a teacher second (if
that). He (or she) is someone to whom the subject did come easily and is
therefore lacking in the ability to understand why it shouldn’t be easy for all.
His presentation of the material tends to be overly detailed and rigorous, too
rapid, lacking in sufficient examples, and “pitched” to a small group of
students who've already had programming experience (though perhaps in
another language) and who in the classroom are recognized by their heads
nodding in agreement with the instructor, their “Oh, how right you are!”
smiles, and the types of questions they ask.

There is nothing this book can do to improve your “knack” for com-

xiv Preface

puter programming. It is my belief, however, that the book represents a big
step forward in improving the manner in which the material is presented.

First, the book is written based on the assumption that you have never
even seen a computer before. (I may assume that you already know how to
spell “computer,” but not much more. You will never hear me say, “Itis
therefore intuitively obvious that . . .” or any other such expression. My
students have taught me well the locations of potential points of confusion,
and you will see me pausing at each of those troublesome spots to help you
through.

My approach to teaching you COBOL programming is what 1 call a
functional approach. Having given you the bare skeletal bones of a COBOL
program, I'll suggest, one at a time, some additional functions you might
want the computer to perform, and having established the motivation for
each new function, I'll teach you about only those additional COBOL ele-
ments necessary to achieve that additional function. By the time I'm
finished, you’ll have command of a full set of COBOL programming ele-
ments and be able to have the computer produce the fanciest pages of
printed results, perform a wide range of calculations, and store, update,
and retrieve ‘“‘tons” of information (or data) on magnetic tape.

Along the road to that end, however, you must play your part in the
learning process. You must work the dozen or so Exercises that are pre-
sented at the end of each chapter. You must study the Example Program
that is provided at the end of each chapter starting with Chapter 7. And
most important of all, you must work the Student’s Program located imme-
diately after each Example Program.

For, like learning to read, learning computer programming is very
much a building block process. In reading you must learn your alphabet
before you can read words, you must be able to read words before you can
read stories. Exactly the same principle applies to the study of computer
prograrnming. If one of the blocks is missing, none of the rest will follow. You
must assure yourself at the end of each chapter that you have mastered the
complete block which that chapter was supposed to provide before you even
glance at the next chapter. Only by honestly testing yourself at the end of
each chapter with the Exercises, the Example Program, and the Student’s
Program will you have that assurance.

Before closing, I would like to express appreciation to some people who
provided necessary stepping stones along the way to the completion of this
book: First comes Colonel Gilbert Kirby, a Professor on the faculty of the
U. S. Military Academy at West Point, whose direct order to me (a member of
his department at the time) in 1970 to “learn COBOL and get a course going
in it!”” was responsible for my having learned the language in the first place.
Next comes my boss at Northeastern University, Professor Wilfred Rule,
who, by inviting me to serve as co-author of his (now our) successful text,
FORTRAN 1V Programming, provided some invaluable experience and in-
spiration. Both served as catalysts out of which sprang the idea to begin this
book. Next are my many students whose repeated prodding (“How's the
book going?”) did more to keep the book going than they can ever imagine.
Finally come my wife, Carol, and my teen age son, Bob, who suffered with
me through the drudgery of proofreading the final copy.

Robert G. Finkenaur Boston, 1977

Contents

Foreword X
Preface xiii

An Introduction to Digital Computers 1

Computers and Their Languages 1

The Digital Computer 2

The Organization of the Basic Digital Computer 2
The Input Unit 5

The Output Unit 6

The Memory Unit 7

Binary Representation of Data Values 12

COBOL vs. Machine Language 13

Hardware vs. Software 15

Exercises 16

Programming: A General Description 18

Purpose 18

Compilation vs. Execution of a COBOL Program 18
A Sample Program 21

The DATA DIVISION 23

The PROCEDURE DIVISION 25

Exercises 37

An Introduction to COBOL 39

An Historical Note 39

The Structure of a COBOL Program 40

The COBOL Character Set 40

COBOL Words—Programmer-Invented-Names 41
The Importance of Descriptive Naming 43

vi Contents

COBOL Reserved Words 44

COBOL Constants—Numeric Literals 44

Non-numeric Literals 45

Figurative Constants 46

COBOL Punctuation Rules 47

COBOL Instruction Cards and the COBOL Coding Form 47
Data Cards 54

Punched Cards: One Last Word 54

Exercises 56

The IDENTIFICATION and ENVIRONMENT DIVISIONS

This Textbook vs. a COBOL Reference Manual 58
The IDENTIFICATION DIVISION 59

The ENVIRONMENT DIVISION 62

Division, Section and Paragraph Headers 65
Exercises 66

A First Look at the DATA DIVISION: The FILE
SECTION 68

Introduction 68

COBOL Data Organization 69

File Description 71

Record Description 73

The Purpose and Form of the PICTURE Clause 75
The Numeric PICTURE Clause 76

The Alphabetic PICTURE Clause 78

The Alphanumeric PICTURE Clause 79

The PICTURE Clause in Surnmary 80

Exercises 82

A First Look at the PROCEDURE DIVISION 86

Introduction 86

The Sentence vs. the Statement 88
The OPEN Verb 88

The CLOSE Verb 89

The READ Verb 90

The WRITE Verb 90

The MOVE Verb 92

The GO TO Verb 95

The STOP RUN Statement 97

A Reminder about END PROGRAM Cards 98
Exercises 99

58

Contents vli

7 Your First Program 103

The Program 103

The IDENTIFICATION and ENVIRONMENT DIVISIONS 104
The DATA DIVISION 105

The PROCEDURE DIVISION 110

Preparing the Program to Run: Control Cards 112
Running the Program 113

Program Errors 115

Error Messages 118

Before You Go on to Chapter 8 119

Exercises 120

Example Program: Student Rolls 121

Student’s Program: Used Cars 124

8 A Second Look at the DATA DIVISION: The PICTURE Clause
in More Detail 125

Introduction 125

The Numeric PICTURE Clause 126

Editing 128

Numeric Edition 130

Alphanumeric Editing 135

Summary 136

Exercises 138

Example Program: Blue Cross/Blue Shield 141
Student’s Program: The Cost of Gasoline 144

9 A Second Look at the PROCEDURE DIVISION: The MOVE
Verb in More Detail 139

Introduction 146

The Numeric MOVE 147

The Alphanumeric MOVE 149

Group MOVEs 150

MOVESs Involving Literals 150

Illegal MOVEs 152

Duplicate Data-Names and Qualifying Clauses 153
The MOVE CORResponding Verb 154

Should I or Shouldn’t I Use Duplicate Data-Names? 156
Exercises 158

Example Program: YMCA Day Camp 162
Student’s Program: N. F. L. Scouting Report 165

vill Contents

10 The WORKING-STORAGE SECTION and Its Uses 166

Introduction 166

The VALUE Clause 167

Independent-Items of Data 169

Building Lines of Output 170

Safeguarding Input Data 176

Exercises 181

Example Program: The U. S. Census 183
Student’s Program: Mortgage Payments 187

11 The COBOL Arithmetic Verbs 189

Introduction 189

The ADD Verb 190

The SUBTRACT Verb 196

The MULTIPLY Verb 200

The DIVIDE Verb 202

The ROUNDED Option 2035

The ON SIZE ERROR clause 206
Intermediate Results 209

The Question of Accuracy 212

This Chapter’s Example Programs 214
Exercises 216

Example Program: Ordering Repair Parts 219
Example Program: Course Grades 223
Student’s Program: Real Estate Taxes 228

12 A First Look at Conditional Statements: The IF
Statement 230

Introduction 230

The Clauses of the IF Statement 231

Conditional Expressions 233

Sign and Class Conditions 235

Exercises 236

Example Program: Electric Bills 239

Example Program: The Highest and Lowest Grades 245
Student’s Program: Charge Accounts 250

13 More Branching Statements 252

Introduction 252

The GO TO DEPENDING Statement 252

An Introduction to the PERFORM Verb 254

The THRU Option in PERFORM Statements 256

14

15

Contents

The EXIT Verb 257

Exercises 260

Example Program: The Increasing Cost of Gasoline 263

Student’s Program: Is There Sex Discrimination in the
Payroll? 268

An Introduction to Magnetic Tapes 270

The Advantages of Magnetic Tape for Bulk Data Storage 270
The Management of Data Files 272

The Tape and Tape Drives 273

The Arrangement of Data on Tape 274

File Labels and the End of File Mark 276
COBOL’s “Automatic” Block Routine 278
Building a Data File on Tape 280

Reading Data from a Tape File 285

Exercises 287

Example Program: Electronic Parts Supply 290
Student’s Program: Motor Vehicle Registration 293

Processing Data in Magnetic Tape Files 294

Searching for Particular Records in a Tape File 294

File Maintenance: the Update Operation 302

File Maintenance: the Purge Operation 311

File Maintenance: the Multiple Update Operation 314

Tape File Maintenance Operations: One Last Point 318

The SORT Operation 320

The MERGE Operation 324

Multiple Reel Files 327

Multiple File Reels 328

A Final Comment on Multiple Reel Files and Multiple File
Reels 330

Exercises 332

Example Program: Checking Accounts Update 336

Student’s Program: Inventory Update 341

Appendix A: Solutions to Exercises 343

Appendix B: COBOL Reserved Word List 356

Appendix C: Operation of the 1. B.M. 29 Card Punch 359

Appendix D: The COMPUTE Verb and COBOL
Arithmetic-Expressions 365

Appendix E: Logic Diagramming with Flowcharts 370

Appendix F: Basic ENVIRONMENT DIVISION Elements for
Selected Computer Systems 374

Epilog: Where Do I Go From Here? 378

Index 379

ix

1.1

An Introduction to Digital Computers

Computers and Their Languages

In this day and age, there is little need to tell students what a computer is or
what it does. The word computer has become as familiar a part of their
household vocabulary as refrigerator. Daily we receive through the mail
credit card bills, checking account statements, grade reports, etc., all bear-
ing the distinctive “handwriting’’ of a computer. We know that thousands of
others are receiving similar bills and statements, and from that comes our
almost. intuitive while basically correct understanding of what a computer
does—it performs at lightning speed overwhelming numbers of repetitive
calculations that at one time would have required countless bookkeepers
many hours to perform.

Hand in hand with the word computer comes the term computer pro-
grammer. Most of us have a fairly valid impression of what a computer
programmer does. He (or just as often, she) is the person who puts the
computer through its paces. He tells it what calculations to make and what
to do with the answers to those calculations.

Most people who read this book are doing so because they have de-
cided they would like to become, even if only to a limited degree, computer
programmers. In order to program a computer, you must be able to “speak’
to it in a language it can understand. There are many languages available
for use with the computer, but two are predominant: COBOL and FOR-
TRAN. The latter (whose name is derived from the words “FORmula
TRANSslation™) is best suited for use in science and engineering
applications.

This text deals with COBOL, the “COmmon Business Oriented Lan-
guage,” a language designed for use in business applications. COBOL is in
fact the most widely used language in the computer world today. This is so,
because the vast majority of computer users are business firms using the
computer to handle basically (though massive) bookkeeping tasks, and
COBOL is the best language available for that purpose. A glance through
the data processing want ads in any metropolitan newspaper will attest to
the popularity of the language and the high level of demand for people who
can write programs in it.

Before we begin delving into the details of COBOL programming, let’s
take an elementary look at how digital computers work. Though there are

1.2

1.3

2 An Introduction to Digital Computers

many who prefer to treat the computer as a “black box,” that is, with an “I
don’t care how it does it, as long as it keeps doing it” attitude; this is seldom
the best approach for any person who is serious about learning program-
ming. Although a person unfamiliar with the inner workings of a car can still
drive it, he can operate it more efficiently and realize better performance if
he has some elementary understanding of what actually is happening under
the hood. The same can be said of computer programmers.

Read this chapter to gain a general understanding only. It is intended
to provide you with a basic feel for what goes on ‘“under the hood” of a
computer. It will prepare you to learn the art of computer programming
more easily, and result in your becoming a more effective programmer.

The Digital Computer

The desk top adding machine, so familiar to everyone, is in fact almost a
digital computer. Its big shortcoming, however, is that it “can’t remember
what to do next.”’ It can compute the answer to any problem only as long as
you its human operator are on hand to feed it each number and each opera-
tion (add, subtract, etc.) one by one and in the proper sequence. Therein lies
the key difference between a digital computer and a desk top adding ma-
chine: the computer can remember “what to do next.” It can be given a
whole list of operations (or instructions) and a whole list of numbers and
remember them all. The operator then simply “pushes the GO button,” and
the computer takes off entirely on its own, obeying the instructions it has
been given beforehand, and solving the whole problem often in less time
than it took you to read this sentence.

And that brings us to a second difference between the adding machine
and the computer—its extreme speed. An adding machine performs its cal-
culations through a complex set of internal, interconnected gears. The
speed with which it performs those calculations is dependent upon the rota-
tional speed of those gears, Within a computer, the components involved in
calculations are all electronic circuits, so they are performed at the speed of
electricity—the speed of light.

Although the battery-powered, pocket calculators of today do rival the
computational speed of digital computers, they still require the presence of
the human operator to feed each numerical value and each instruction as it
is needed in the course of solving a problem.

It is this list of instructions 1 keep referring to that is called the pro-
gram. The scheme which truly sets the computer apart, whereby all instruc-
tions are given to the computer and stored in its memory before it begins
solving the problem, is therefore called the Stored Program Concept.

The Organization of the Basic Digital Computer

If I were about to explain to you how an automobile’s engine worked, 1
would use the simplest, most straightforward engine as the basis of my
explanation. To make the discussion less difficult to digest, I would omit

INPUT
UNIT

FIGURE 1.1

1.3 The Organization of the Basic Digital Computer 3

CENTRAL
PROCESSING UNIT

CONTROL
UNIT

MEMORY |ARITHMETIC
UNIT UNIT

Organization of a Basic Digital Computer

speaking of such things as fuel injection systems, double-barreled car-
buretors, emission control systems, and other similarly complicated devices
which are so often a part of the most up-to-date engines. Likewise, as I now
approach an explanation of how computers are organized and how they
function, I will choose the basic or “first generation’ digital computer to be
the basis of my explanation. Do not fear that you will be getting an inaccu-
rate description. Current generation digital computers have all evolved
from the basic digital computer, still retain their principles of operation, and
will give the appearance to you of being organized as described here. Only
after you have mastered the contents of this book will it be necessary for you
to concern yourself with the features built into modern computers which
were not available in the simplified version we will be discussing.

As seen in Figure 1.1, the computer is organized into three major
units: the input unit, the central processing unit (or “CPU” as the folks
down at the computer center call it), and the output unit.

The input unit is the device through which we put information into the
computer. The output unit is the device through which the computer puts
out for human use the answer to the problem it has solved for us. You may
hear the term peripheral devices, or simply peripherals, being used to lump
together the input and output devices as well as any other devices that are
connected to but not included in the CPU.

The CPU is further subdivided into three important units: the control
unit, the arithmetic unit, and the memory unit.

The arithmetic unit (pronounced a-rith-me’-tic rather than a-
rith’-me-tic in computer circles) is the portion of the CPU where all arithme-
tic operations—adding, subtracting, multiplying, dividing—are performed.
If it occurs to you to wonder why the arithmetic unit cannot perform
higher-order mathematics such as raising numbers to various powers, or
taking square roots or integrating, the answer is that it can, but not directly.
Such higher-order operations are accomplished by a clever combination of
the four basic operations listed.

The arithmetic unit also provides the computer with the ability to
make certain logic decisions such as whether one number is larger than or
equal to another, or whether a single number is negative, positive, or zero.

FIGURE 1.2

4 An Introduction to Digital Computers

The Central Processing Unit

Courtesy of Control Data Corp.

You will find such decision-making ability extremely valuable later when
you are faced with the necessity to write a program for the computer in
which selected instructions are to be omitted under certain numerical cir-
cumstances. (Take an example: Under normal circumstances the amount
of a check is subtracted from the balance in your checking account. In the
hopefully rare instance where the amount of a check is larger than the
balance in your account, it should not be subtracted from the balance, but
rather “bounced” by the bank.) We count as the digital computer’s three
most valuable talents its Stored Program Concept, its great speed, and this
ability provided by the arithmetic unit to make basic logic decisions.

The memory unit is where the computer stores all information it needs
to solve the problem it is working on. We will discuss this unit in greater
detail in Section 1.6. .

The control unit is the boss of the whole operation. Following the in-
structions it received and stored prior to the operator’s “pushing the GO
button,” it controls the movement of information from the input unit to
memory, from memory to the arithmetic unit, from the arithmetic unit back
to memory, and from memory to the output unit. Whenever it moves infor-
mation (numbers) to the arithmetic unit, it tells the arithmetic unit which
operation to perform on them (add them or subtract them or whatever), and

