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Preface

\

This volume is a text for a second course in algebra that presupposes ‘ah.
introductory course covering the-type of material contained in the Introduc-
tion and the ﬁ;si three or four chapters of Basic Algebra 1. These chapters
dealt with the rudiments of set theory, group theory, rings, modules, especially
modules over a principal ideal domain, and Galois theory focused on the
classical problems of solvability of equations by radicals and constructions
- with straight-edge and compass. -

Basic Algebra 11 contains a good deal more material than can be covered in
a year’s-course. Selection of chapters as well as setting limits witl_lin chapters,
will be essential in designing a realistic program for a year- We briefly indicate
several alternatives for such a program: Chapter 1 with the addition of section
2.9 as a supplement to section 1.5, Chapters 3 and 4, Chapter 6 to section
6.11, Chapter 7 to section 7.13, sections 8.1-8.3, 8.6, 8.12, Chapter 9 to section
9.13. A slight modification of this program would be®o trade off sections
4.6-4.8 for sections 5.1-5.5 and .5.9. For students who have had no Galois
theory it will be desirable to supplement section 8.3 with some of the material
of Chapter 4 of Basic Algebra 1. If-an-important objective of a course in
algebra is an understanding of the foundations of algebraic structures and the
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relation between algebra and mathematical logic, then all of Chapter 2 should
be included in the course. This, of course, will necessitate thinning down other
parts, e.g., homological algebra. There are many other possibilities for a one-
year course based on this text.

The material in each chapter is treated to a depth that permits the use of
the text also for specialized courses. For example, Chapters 3, 4, and 5 could
constitute a one-semester course on representation theory of finite groups, and
_Chapter 7 and parts of Chapters 8, 9, and 10 could be used for a one-semester
course in commutative algebras. Chapters 1, 3, and 6 could be used for an
introductory course in homological algebra.

Chapter 11 on real fields is somewhat isolated from ihe remainder of the
book. However, it constitutes a direct extension of Chapter 5 of Basic Algebra |
and in¢ludes a solution of Hilbert’s problem on positive semi-definite rational
functions, based on a theorem of Tarski’s that was proved in Chapter 5 of the
first volume. Chapter 11 also includes Pfister’s beautiful theory of quadratic
forms that gives an answer to the question of the minimum number of squares
required to express a sum of squares of rational functions of n real variables
(see section 11.5).

Aside from its use as a text for a course, the book is designed for independent
reading by students possessing the background indicated. A great deal of

-material is included. However, we believe that nearly all of this is of interest
to mathematicians-of diverse orientations and not just to specialists in algebra.
We have kept in mind a general audience also in seeking to reduce to a
minimum the technical terminology and in avoiding the creation of an overly
elaborate machinerybefore presenting the interesting results. Occasionally we
have had to pay a price for this in proofs that may appear a bit heavy to
the specialist. '

Many exercises have been included in the text. Some of these state interesting
additional results, accompanied with sketches of proofs. Relegation of these to
the exercises was motivated simply by the desire to reduce the size of the text
somewhat. The teader would be well advised to work a substantial number
of the exercises.

An extensive bibliography seemed inappropriate in a text of this type. In its
place we have listed at the end of each chapter one or two specialized texts
in which the reader can find extensive bibliographies on the subject of the
chapter. Occasionally, we have included in our short list of referenc&s one or
two papers of historical importance. None of this has been done in a systemanc
or comprehensive manner.

Again it is a pleasure for me to acknowledge the assistance of many friends
in suggesting improvements of earlier versions of this text. I should mention
first the students whose perceptions detected flaws in the exposition and some-
times suggested better proofs that they had seen elsewhere. Some of the students
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who have contributed in this way are Monica Barattieri, Ying Cheng, Daniel
Corro, William Ellis, Craig Huneke, and Kenneth McKenna. Valuable sug-
gestions have been communicated to me by Professors Kevin McCrimmon,
James D. Reid, Robert L. Wilson, and Daniel Zelinsky. I have received such
suggestions also from my colleagues Professors Walter Feit, George Seligman,
and Tsuneo Tamagawa. The arduous task of proofreading was largely taken
over by Ying Cheng, Professor Florence Jacobson, and James Reid. Florence
Jacobson assisted in compiling the index. Finally we should mention the
fine job of typing that was done by Joyce Harry and Donna Belli. | am greatly
indebted to all of these individuals, and I take this opportunity to offer them
my sincere thanks.

January 1980 Nathan Jacobson
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Introduction

In the Introduction to Basic Algebra I (abbreviated throughout as “BAI”) we
gave an account of the set theoretic concepts that were needed for that volume.
‘These included the power set 2(S) of a set.S, the Cartesian product S, x S, of
two sets §; and S,, maps (=functions), and eduivalence-relations. In the first
volume we generally gave preference to constructive arguments and avoided
transfinite methods altogether. ' :

The results that are presented in this volume require more powerful tools,
particularly for the proofs of certain existence theorems. Many of these proofs
will be based on a result, called Zom\ lemma, whose usefulness for proving
such existence theorems was first noted by Max Zorn. We shall require also
some results on the arithmetic of cardinal numbers. All of this fits into the
framework of the Zermelo-Fraenkel axiomatization of set theory, including
the axiom of choice (the socalled ZFC set theory). FTwo excellent texts that
can be used to fill in the details omitted in our discussion are P. R. Halmos’
Naive Set Theory and the inore substantial Set Theory and the Continuum
Hypothesis by P. J. Cohen.

" Classical mathematics deals almost exclusively with structures based on sets.
On the other hand, category theory—which will be introduced in Chapter 1—
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deals with collections of sets, such as all groups, that need to be treated
differently from sets. Such collections are called classes. A brief indication of a
suitable foundation for category theory is given in the last section of this
Introduction.

0.1 ZORN’'S LEMMA

We shall now formulate a maximum principle of set theory called Zoia's

lemma. We state this first for subsets of a given set. We recall that a set C of

subsets of a set S (that is, a subset of the power set #(S)) is callex a chain if C

is totally ordered by inclusion, that is, for any 4,Be C either A = Bor B — A.

A set T of subsets of S is called inductive if the union UA, of any chain
C = {A,} = T is a member of T. We can now state

ZORN’S LEMMA (First formulation). Let T be a non-vacuous set of subsets
of a set S. Assume T is.inductive. Then T contains a maximal element, that is,
there exists an M € T such that no A€ T properly contains M.

There is another formulation of Zorn’s lemma in terms of partially ordered
sets (BAI, p. 434). Let P, > be a partially ordered set. We call P, > (totally or
linearly) ordered if for every a,be P either a > b og, b > a. We call P inductive if
every non-vacuous subset C of P that i is (totally) ordered by > as defined in P
has a least upper bound in P, that is, there exists a ue P such that u > a for
every aeC and if v > a for évery ae C then v > u. Then we have

.ZORN’S LEMMA (Second formulation). Let P, > be a partially ordered set
“%hat is inductive. Then P contains maximal elements, that is, there exists me P
such that no ae P satisfiesm < a. -

Itis wsily seen that the two formulatiohs of Zorn’s lemma are equivalent, so
there is no harm in referring to -either as “Zorn’s lemma.” It can be shown that
Zorn’s lemma is equivalent to the

AXIOM OF CHOICE. Let S be a set, #(S)* the set of non-vacuous subsets of
S. Then there exists.a.map f (a “choice function™) of Z(S)* into S such that
f(A)eAfor every A eQ‘(S)‘

This is equivalent also to the follow.ng If {4,} is a set of non-vacuous sets
A,, then the Cartesian product [J4, # &.
The statement that the axiom of choice implies Zorn's lemma can be proved



