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Preface

These lectures are designed to provide a survey of modern intersection theory
in algebraic geometry. This theory is the result of many mathematicians’ work
over many decades; the form espoused here was developed with R. MacPherson.

In the first two chapters a few episodes are selected from the long history of
intersection theory which illustrate some of the ideas which will be of most
concern to us here. The basic construction of intersection products and Chern
classes is described in the following two chapters. The remaining chapters contain
a sampling of applications and refinements, including theorems of Verdier,
Lazarsfeld, Kempf, Laksov, Gillet, and others.

No attempt is made here to state theorems in their natural generality, to
provide complete proofs, or to cite the literature carefully. We have tried to
indicate the essential points of many of the arguments. Details may be found in
[16].

I would like to thank R. Ephraim for organizing the conference, and C.
Ferreira and the AMS staff for expert help with preparation of the manuscript.
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1. Intersections of Hypersurfaces

1.1. Early history (Bézout, Poncelet). A most basic question in intersection
theory is to describe the intersection of several algebraic hypersurfaces in n-space,
i.e., the common solutions of several polynomials in » variables. The ancients
certainly knew about the possible intersections of lines and conics in the plane,
and they also knew that rational solutions of two quadric equations in three
variables behaved like solutions of one cubic equation in two variables [61].

We do not know who first observed that two plane curves of degrees p and g
should intersect in pqg points. By 1680 Newton [48] had developed an elimination
theory for two such equations. This produced a resultant, which was a polynomial
in one variable of degree pg whose solutions gave an abscissa of the intersection
points of the two curves. The corresponding construction and assertion for n
equations in n variables were made in 1764 by Bézout [S, 6]. Bézout’s treatment
was entirely algebraic, although he briefly interpreted his result for n = 2 and
n = 3: the number of intersections of two plane curves (or three surfaces in space)
is at most the products of their degrees.

By referring to the resultants, which are polynomials in one variable, one can
also discuss the possibilities of nonreal solutions, asymptotic solutions, and multi-
ple solutions. As geometry developed, the first two of these situations were
subsumed by considering intersections of hypersurfaces H,,..., H, in complex
projective space PZ. Now we assign an intersection multiplicity

i(P)=i(P,H --- H,)

to a point P of the intersection M H,; if the H; do not meet transversally at P, this
multiplicity will be greater than one.

Although there was little early discussion of this multiplicity, the governing
principle of continuity was well understood, at least since Poncelet [51]. If the H,
vary in families H,(¢), with H,(0) = H,, and P,(¢),..., P.(¢) are the points of the
general intersection M H,(¢) which approach P as ¢ — 0, then

r

i(P Hy oo H,) = L i(P(0), H(1) - H, ().

Varying the H, so that the H,(r) meet transversally, this determines the multiplic-
ityi(P, H, --- H)).

In all the above discussion, it is assumed that the intersection of the hyper-
surfaces is a finite set, or at least that P is an isolated point of N H,.

1



2 WILLIAM FULTON

1.2. Class of a curve (Pliicker). An important early application of Bézout’s
theorem was for the calculation of the class of a plane curve C, i.e., the number of
tangents to C through a given general point Q:

y

Equivalently, the class of C is the degree of the dual curve C V. If F(x, y. z) is the
homogeneous polynomial defining C and Q = (a: b: c), then the polar curve C,
is defined by

FQ(x, y,z)=aF, + bF, + cF,,
where F, = 9F(x, y, z)/3X, F,, F, are partial derivatives. This is defined so that
a nonsingular point P of C is on C, exactly when the tangent line to C at P
(defined by XF,(P) + YF.(P) + ZF,(P) = 0) passes through Q. One checks that
C meets CQ transversally at P if P is not a flex on C, so
class(C) = #C () C, = deg Cdeg C, = n(n — 1),

if n is the degree of C, and C is nonsingular.

If C has singular points, however, they are always on C N C,, so they must
contribute. For example, if P is an ordinary node (resp. cusp) and Q is general,
then

i(P,C-Cy)=2 (resp.i(P.C-C,)=23).
This gives the first Pliicker formula [50]
n(n— 1) =class(C) + 28 + 3k,
if C has degree n, d ordinary nodes, k ordinary cusps, and no other singularities.
1.3. Degree of a dual surface (Salmon). In 1847 Salmon [53] made a similar

study of surfaces. If S C P? is a surface, the degree of the dual (or “reciprocal”)
surface SV is the number of points P € S such that the tangent plane to S at P
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contains a given general line /. (This number is one of the projective characters of
S, now called the second class of S.)

For a point Q € P°, let S, be the polar surface of S with respect to Q: if
F(x, y, z,w) defines S and Q = (a: b:c:d), then aF, + bF, + cF, + dF,, de-
fines S,. Taking two points Q,, Q, on [, one sees as before lhat a nonsingular
point P of Sison S, M Sy, if and only if the tangent plane to § at P contains /.
Thus for S nonsingular of degree n, and Q,, Q, general,

deg(SY) = #5 (N Sy, M Sy, = n(n—1)".

As before, all singular points of S are contained in S M S, M Sy, If P is an
isolated singular point of S, its contribution to the total n(n — 1)? is the
intersection multiplicity i(P, S - Sy - Sp,). For example, the contribution of an
ordinary double point is two, so deg(S¥) = n(n — 1)> — 28 if S has 8 ordinary
double points.

If S is singular along a curve C, however, a new phenomenon occurs, a problem
of excess intersection: how to compute the contribution of C to the total
intersection n(n — 1)2, so that n(n — 1) diminished by this contribution, and by
contributions of other singular points, ytelds deg(S ). Salmon initiates a study of
the contribution of a curve C to the intersection of three surfaces in space when C
is a component of their intersection. For example, if C is a line, he gives its
contribution as m + n + p — 2, where m, n, p are the degrees of the surfaces.
Salmon justifies this by saying that the answer must be independent of the choice
of surfaces of given degrees, and then he calculates it directly in the degenerate
case when the first is the union of a plane containing C and a general surface of
degree m — 1. This surface meets the other two surfaces in (m — 1)np points,
m — 1 of which are on the line C. The plane meets the other two surfaces in
curves of degrees n — 1 and p — 1 in addition to C; these curves meet in
(n — 1)(p — 1) points. The total number of points of intersection outside C is
therefore

(m—Dnp—(m—-1)+(n—-1)(p—1)=mp—(m+n+p-2),
as asserted. In case C is a double line on the first surface, he calculates its

contribution as m + 2n + 2p — 4 by working out the case where this surface is
the union of two surfaces containing C.
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If C is a double line on a surface S of degree n, this analysis predicts 5n — 8 as
the contribution of C to the intersection of S with S, and S, . However, as
Salmon points out, there are special points on C, called pinch points (or “cuspidal”™
points), where the two tangent planes to S coincide.

pinch point

If C is the line x =y = 0, and S is the surface Uy*> + Vxy + Wy’ = 0, then
these pinch points are the intersections of C with the surface V> = 4UW, so there
are 2n — 4 pinch points on S. Thus C, together with its pinch points, diminishes
the degree of SV by (5n — 8) + (2n — 4) = Tn — 12. For example, a cubic with a
double line (e.g. y> = zx* + x*) has a dual surface of degree three.

Salmon also considers more general curves. If C is a complete intersection of
surfaces of degrees a and b, and C is a component of intersection of three surfaces
of degrees m, n, and p, then he finds that the contribution of C to the total
number of mnp is ab(m + n + p — (a + b)). Concluding this remarkable paper,
he deduces that if such C is an r-fold curve on a surface S, then it diminishes the
degree of the dual by

ab[(r = )(3r+ )n— r2(r — 1)(a + b) — 2r(r — 1)].

1.4. The problem of five conics. Problems of excess intersection arise frequently
in enumerative problems. The famous problem of the number of plane conics
tangent to five given conics in general position is a typical example of this. A
plane conic is defined by a quadratic polynomial ax* + by? + cxy + dx + ey + f,
unique up to multiplication by a nonzero scalar, so the space of conics can be
identified with P°. One checks that the condition to be tangent to a fixed
nonsingular conic is described by a hypersurface of degree six in P°. The desired
conics are then represented by the points in the intersection of five such
hypersurfaces H, M --- M Hs. There are not 6> = 7776 such conics, however, as
originally thought by Steiner and others. Indeed, the Veronese surface V' = P2 of
conics which are double lines is contained in M H,, and one can show (cf. §4
below) that the contribution of V' to the intersection is actually 4512, which leaves
3264, the actual number of (nonsingular) conics tangent to five given conics in
general position.
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Note that the conics tangent to a fixed line form a quadric hypersurface in P°.
Given five general lines, the Veronese contributes 31 to the predicted intersection
number 2° for the five quadrics. Since everyone knew that there is only one
nonsingular conic tangent to five general lines (by duality, for example), it is
curious that these false answers were proposed when the lines are replaced by
curves of higher degree.

In spite of the clear exposition of the importance of excess intersections in
enumerative geometry by Salmon and Cayley, such considerations played little
role in the great development of enumerative geometry at the hands of Chasles, de
Jonquiéres, Schubert, Halphen, Zeuthen, and others. For one thing, they avoided
writing equations for varieties and, especially, for parameter spaces. In general,
however, their work can be interpreted as calculating intersections on appropriate
spaces so that the intersections become proper. Often these spaces are blow-ups of
the naive spaces, which amounts to adding structure to degenerate figures. For
example, a classical approach to the space of conics amounts to working on the
space of complete conics, which is the blow-up P> of P° along the Veronese; in
this model a point in the exceptional divisor corresponds to a double line together
with a pair of points on the line. The proper transforms of the hypersurfaces H,
then meet properly on P outside the exceptional divisor, and once one knows an
appropriate “intersection ring” for P> one may calculate their intersection.

The same approach works for quadrics of arbitrary dimension. The beautiful
study of complete quadrics was initiated by Schubert, who found many enumer-
ative formulas. The rigorous construction of these parameter spaces and their
intersection rings has been carried out by Semple and Tyrell, with modern
re-examination by Vainsencher, Laksov, and Lazarsfeld. Realizing the spaces as
orbit spaces of suitable group actions, by Demazure and by De Concini and
Procesi, has led to a clearer understanding of their structure.

1.5. A dynamic formula (Severi, Lazarsfeld). In general, if H,..., H, are
arbitrary hypersurfaces in P”, with d, = deg( H,), Severi [58] proposed to assign
numbers i(Z) to certain distinguished subvarieties Z of the intersection locus
H, M --- N H,, so that

Each irreducible component of M H, should be distinguished, and each isolated
point should be assigned its intersection multiplicity. In general, as in Salmon’s
examples, there may also be imbedded distinguished varieties. Severi’s dynamic
procedure, corrected and completed by Lazarsfeld [40], can be summarized as
follows. If F; is a homogeneous equation for H,, consider deformations H,(¢) of H,
defined by homogeneous polynomials F, + (G, + t’G/ + ---. For a given sub-
variety Z of M H,, let j(Z) be the number of points of M H,(t) which approach Z
as t — 0, for a generic deformation; in fact, j(Z) of the points will approach Z for
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any deformation for which the first order parts (G,,..., G,) belong to a certain
open set U, of the space of n-tuples of polynomials of degrees d,,..., d,. For any
point P set i(P) = j(P). Only finitely many points will have i(P) = 0. For an
irreducible curve C, set

i(C)=/4C)— L i(P),

PecC

so i(C) is the number of points that generically approach C, but not any
particular point on C. Inductively,

i(Z2) =j(z) - Xi(V),
the sum over all proper irreducible subvarieties V' of Z. Then Li(Z)=d, --- d,,
which achieves the desired decomposition.

We will later see a static construction of this decomposition, which is also valid
in contexts where such deformations are unavailable. It should be emphasized,
however, that in spite of the existence of a rigorous general theory, and some
explicit formulas, the actual computation of the contributions i(Z) remains a
difficult problem.

For plane curves, following Segre [55], Lazarsfeld gives the following answer. If
H; = D; + E, where D, and D, meet properly, and P is a point in E, let G, be
generic as above, let A4; be equations for D,, and let F be the curve defined by
A,G, — A,G,. Then

i(P)=i(P,E-F)+i(P,D,-D,).
For example, if H, = 2L, + L,, H, = L, + 2L,, with L, L, lines meeting at a
point P, then the Segre-Lazarsfeld formula shows that

i(P)=i(L,)=i(L,) =3.

1.6. Algebraic multiplicity, resultants. For an isolated point P in the intersection
of hypersurfaces H|,..., H, in P", a modern static definition of the intersection
multiplicity is

i(P,Hy -+ H,)=dim¢c0p/ (f15..., f,),

where 0, is the local ring of P" at P, and f; is a local equation for H, in O,. If P is
the origin in C" C P”, O, is the localization of C[ X},..., X,] at the maximal ideal
(X},..., X,). Or one may replace U, by its completion C[[ X,,..., X,]], or by the
ring C{(X,,..., X,) of convergent power series. This algebraic construction of
intersection multiplicity dates from Macaulay [42].

Let us verify the agreement of this definition with that obtained from elimina-
tion theory, at least for plane curves. Suppose the curves are defined by poly-
nomials f(x, y) and g(x, y), and the two curves do not meet at infinity on the
y-axis. Thus we may assume

f(x, ) = ag(x)y" + a\(x)y" "' + - + a,(x)
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with a,(0) = 0. Let A = C[x],,, be the local ring of the x-axis at the origin. Then
A[y]/(f) is an A-algebra which is a free A-module of rank n, and one may
construct the resultant r = R(f, g) in A by

, = det(A[}’]/(f) f’A[y]/(f))'

(It is a formal exercise, left to the reader, to show that this agrees with the usual
definition, as in [60].)

We must show that the order of vanishing of r at x = 0 is equal to the sum of
the intersection numbers of the two curves at all points P on the y-axis:

Now A[y]/(f, g) is finite dimensional over C, so it is a direct sum of its
localizations @,/( f, g), where P varies over the points on the y-axis on both
curves. Therefore

Yi(P)=dimcA[y]/(f, g).

P

Since the order of vanishing of r at x = 0 is dimc A4 /(r), the equation to be
proved is

dimcA[y]/(f. g) = dimcA4/(r).
This is a special case of an important algebraic fact:

LEMMA. Let A be a one-dimensional Noetherian local domain, M a finitely
generated free A-module and &: M — M an A-homomorphism. Then

length ,(M/¢(M)) = length ,(4/(det(o))).

The length of an A-module N is d if there is a chain of submodules N = N, D
N, D --- DN, =0, where N,/N,,, is isomorphic to the residue field of 4. In
case 4 contains a subfield K which maps isomorphically to its residue field, then
length , N = dim N.

When 4 is a discrete valuation ring, the lemma is an exercise in elementary
divisors. For the general case see [16, A2.6].






2. Multiplicity and Normal Cones

2.1. Geometric multiplicity. A subvariety X of C" is defined by a prime ideal

I(X)in C[X,,..., Xy]. The coordinate ring T'( X) is the residue ring
N(x)=CcClXx,..., X,]/I(X).

A (closed) subscheme Z of X is determined by an ideal I = I(Z) of I'(X'), which

is a subvariety if I(Z) is prime. In this case the local ring of X at Z is the

localization of T'( X) at /(Z), and is denoted 0, .

If Z is a subscheme of X, the irreducible components of Z are the subvarieties of
X corresponding to the minimal prime ideals of I'( X') which contain I(Z). If V'is
such a component, the geometric multiplicity of V in Z is defined to be the length
of the Artinian ring

Oy z= @mx/l(z)ev.x'
The cycle of Z, denoted [ Z], is defined to be the formal sum

r

[2] = X m[V].

i=1
where V,,..., V, are the irreducible components of Z, and m, is the geometric
multiplicity of V¥, in Z. For example, if X = C" and Z is the scheme-theoretic
intersection of n hypersurfaces which meet properly, then

[z]=2i(P)[P].
the sum over the points P in Z, with i(P) the intersection number described in
§l.6.

For an arbitrary variety X, subschemes Z are defined by ideal sheaves § = $(Z).
On any affine open U C X which meets Z, § is given by an ideal in the coordinate
ring of U, which is prime if Z is a subvariety. The local ring of X along V/, and the
geometric multiplicity of a component V of Z can be defined using any such U.

2.2. Hilbert polynomials. A subscheme Z of PV is defined by a homogeneous
ideal I = I(Z) in C[X,..., Xy]. If C[X,,..., Xy], denotes the homogeneous
polynomials of degree ¢, such an ideal 7 is the direct sum of its intersections 7,
with C[X,..., Xy],. Two homogeneous ideals define the same subscheme when
their homogeneous pieces are the same for all but finitely many z. The Hilbert
polynomial of Z is the polynomial P,(¢) such that

P,(t) = dim(C[ X,,..., Xy],/1,)

9
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for all sufficiently large ¢. Indeed, one shows (cf. [30, §1.7; or 57]) that the right
side is a polynomial of degree equal to the dimension of Z, for ¢ > 0. If
n = dim(Z), one may define the degree of Z, deg(Z), to be the coefficient of
t"/n!in P,(1),1.e.

(1) P,(1) = deg(Z)t"/n! + lower terms.

It also follows that if [Z] = Xm,[V] is the cycle of Z, then

(i) deg(Z)= X mdeg(V;).
dim(V,)=n

If V is a subvariety of P", and H is a hypersurface of P" not containing ¥, then
(iii) deg(V N H) = mdeg(V).

It will later become clear that this definition of deg(}') agrees with the
geometric notion of counting intersections of ¥ with complementary linear

spaces. In fact, we shall have no need for Hilbert polynomials, although they have
played an important role in the modern algebraic development of multiplicity.

2.3. A refinement of Bézout’s theorem. The elementary facts about degree in the
preceding section, together with an important join construction, allow a simple
proof of the following proposition. A stronger result will appear later when more
intersection theory is available.

PROPOSITION. Let V,..., V. be subvarieties of P", and let Z,,..., Z, be the
irreducible components of V|, M --- (M V. Then

i deg(Z,) < lj[l deg(Vj).

i=1

PROOF. By a simple induction, one may assume s = 2. Construct the ruled join
J =J(V,,V,) in P*N*1 as follows. Let X,..., Xy, Y;,..., Yy be homogeneous
coordinates on P?V* 1, Let P}¥ (resp. P;¥) be the linear subspace of P>V *! defined
by the vanishing of all Y, (resp. all X,). Identifying P" with P", one has ¥V, c P".
Let J be the union of all lines from points of ¥, to points of V,. Algebraically, the
homogeneous coordinate ring of J is simply the tensor product of the homoge-
neous coordinate rings of V| and V,. One verifies that

(i) deg(J) = deg(¥7) deg(¥3).

Let L be the linear subspace of P*V*! defined by X, = ¥,, 0 <i < N. Then
L = P" and

(i1) LNJ=V NV

Thus we are reduced to the case where one of the varieties being intersected is a
linear subspace.

Since a linear subspace is an intersection of hyperplanes, one is further reduced
inductively to the case where one of the varieties, say V|, is a hyperplane. In this
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case, either ¥, D ¥V, and the proposition holds with equality, or [V, N V;] =
Y/_,m,[Z,], where the Z, are the irreducible components of V', M V;, and by (ii)
and (iii) of §2.2 (for any hypersurface ¥, not containing V;),

2 m,deg(Z,) = deg(V,) deg(V>).

2.4. Samuel’s intersection multiplicity. Suppose H,,..., H, are hypersurfaces in
an n-dimensional variety ¥, and P is an isolated point of N H,. Let 4 = 0, , be
the local ring of V along P, and assume each H, is defined by one element f; in 4.
Let I =(f,,...,f,). Then A/I is finite dimensional over C, and if P is a
nonsingular point of V, one may use dim-A4 /I to give a workable definition of
the intersection multiplicity i(P, H, --- H,) as in §1. The following is a standard
example of the failure of this definition in general.

EXAMPLE. Let V be the image of the mapping ¢: C*> —» C* defined by
o(s, t) = (s* s, st>, t*), let P be the origin, and let H, and H, be the hyper-
surfaces of V' defined by the coordinates x, and x, respectively. By varying H,
and H,, the principle of continuity requires that the intersection multiplicity is 4.
However, one calculates that the ideal of V is generated by x,x, — x,x;,
xixy — x3, x,xi7 — x3, and x3x, — xix,, from which it follows that
dimeA4/(x,, x4) = 5.

Samuel [54] defines the multiplicity i(P) = i(P, H, --- H,) to be the coeffi-
cient of t" /n! in the Hilbert-Samuel polynomial

(1) P(t) =dimc(A/I") = i(P)t"/n! + lower terms

for t > 0. To see that dim(A4 /I") is a polynomial of degree n in ¢, for t > 0, one
may proceed as follows. Let A = 4 /I and consider the surjection of graded rings

(ii) AlX,....X, 1> @ I'/1"!
=0

which maps X; to the image of f; in 1/I%. The kernel of this homomorphism is a
homogeneous ideal which defines a subscheme P(C) of projective (n — 1)-space
P~ over A. (Those who feel uncomfortable with projective space over a ring
such as A may realize P(C) in P*~' X V, since A is a residue ring of 4.) This
scheme P(C) is the projective normal cone to M H; in V. We shall discuss normal
cones in succeeding sections. Here we shall use the fact that P(C) has pure
dimension n — 1, so its Hilbert polynomial has the form

(iii) Ppiey (1) = dime I'/T = i(P)t" ' f(n = 1)l + - -

for t > 0. A simple calculation shows that this definition of i(P) is the same as
that in (i). However, since P(C) C P!, _the only component of P(C) is the
underlying variety PZ ' of P{ ™' and, therefore,

(iv) [P(C)] = i(P)[Pe"]



