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Inorganic Materials
Series Preface

Back in 1992, two of us (DWB and DO’H) edited the first edition of
Inorganic Materials in response to the growing emphasis and interest in
materials chemistry. The second edition, which contained updated
chapters, appeared in 1996 and was reprinted in paperback. The aim
had always been to provide the reader with chapters that while not
necessarily comprehensive, nonetheless gave a first-rate and well-refer-
enced introduction to the subject for the first-time reader. As such, the
target audience was from first-year postgraduate student upwards.
Authors were carefully selected who were experts in their field and
actively researching their topic, so were able to provide an up-to-date
review of key aspects of a particular subject, whilst providing some
historical perspective. In these two editions, we believe our authors
achieved this admirably.

In the intervening years, materials chemistry has grown hugely and
now finds itself central to many of the major challenges that face global
society. We felt, therefore, that there was a need for more extensive
coverage of the area and so Richard Walton joined the team and, with
Wiley, we set about a new and larger project. The Inorganic Materials
Series is the result and our aim is to provide chapters with a similar
pedagogical flavour but now with much wider subject coverage.
As such, the work will be contained in several themed volumes. Many
of the early volumes concentrate on materials derived from continuous
inorganic solids, but later volumes will also emphasise molecular and
soft matter systems as we aim for a much more comprehensive coverage
of the area than was possible with Inorganic Materials.

We approached a completely new set of authors for the new project
with the same philosophy in choosing actively researching experts, but
also with the aim of providing an international perspective, so to reflect
the diversity and interdisciplinarity of the now very broad area of
inorganic materials chemistry. We are delighted with the calibre of
authors who have agreed to write for us and we thank them all for



X INORGANIC MATERIALS SERIES PREFACE

their efforts and cooperation. We believe they have done a splendid job
and that their work will make these volumes a valuable reference and
teaching resource.

DWB, York
DO’H, Oxford
RIW, Warwick

July 2010



Preface

The late Professor Jean Rouxel once wrote that ‘solids bring to mind the
idea of volume, and it may therefore seem paradoxical to discuss solids of
low dimensionality’. Nonetheless, the concept has remained useful and is
still widely used by both chemists and physicists but perhaps not to
describe the same thing!

To a chemist a low-dimensional solid may refer to a structure or
compound in which there is a high degree of anisotropy in the spatial
distribution of the chemical bonds, which may lead to nanoparticulate
(OD), fibrous (1D), or lamellar (2D) morphologies. On the other hand a
physicist may take advantage of the anisotropy of a certain physical
property such as electrical conductivity, optical response or magnetisa-
tion. In fact the physical properties of low-dimensional solids cannot be
fully described by simply transposing in 2 or 1 dimension the physical
laws that hold for 3D space. Low-dimensional solids can exhibit new
phenomena, for example the well-known case of charge density waves
that were observed in the layered, transition-metal dichalogenides.

In this book we would like to introduce you to new, relevant, con-
temporary topics, which deal with the synthesis and properties of low-
dimensional solids. The five chapters describe structures, applications
or phenomena not known when Inorganic Materials was produced. Our
line-up of distinguished international authors have written on topics
ranging from the chemistry and physics of inorganic nanotubes and
sheets, quantum effects in nanoparticles, novel layered superconductors
to inorganic-DNA delivery systems.

We are delighted by their efforts and trust you find what they have
written both fascinating and exciting.

DWB, York
DO’H, Oxford
RIW, Warwick

July 2010
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1

Metal Oxide Nanoparticles

Alan V. Chadwick and Shelley L.P. Savin

Functional Materials Group, School of Physical Sciences, University of Kent,
Canterbury, Kent, UK

1.1 INTRODUCTION

Systems that contain particles with one dimension in the nanometre regime
are now referred to as nanomaterials. Over the last decade there has been a
growing interest from biologists, chemists, physicists and engineers in the
applications of these materials, so-called nanotechnology, which is often
referred to as ‘the next industrial revolution’."! The reasons for this
interest are the unusual properties, with potential technological applica-
tions, that are exhibited by these materials when compared with their bulk
counterparts.> ") Amongst the vast array of chemical compounds that
have been prepared as nanomaterials there has been a particular attention
on polar oxides, where the bonding is ionic or semi-ionic, and these systems
will be the focus of this chapter. There are several reasons for the interest in
these materials. First, these materials were amongst the earliest nano-
materials subjected to detailed investigation and there is now a sound
background in their preparation and characterisation. For over twenty
years there has been continuous research in this area following the pion-
eering work of Gleiter.>*#! Secondly, the interatomic interactions are
often predominantly Coulomb forces, or if not can be modelled quite
well with an empirical ionic potential,">'%! and therefore are an

Low-Dimensional Solids Edited by Duncan W. Bruce, Dermot O’Hare and Richard I. Walton
© 2010 John Wiley & Sons, Ltd.



2 METAL OXIDE NANOPARTICLES

ideal test-bed for models of nanocrystalline properties. Finally, these
oxides are used in a vast array of important commercial applications.
These applications are wide ranging; from electronics and optoelectronics
(e.g. sensors), to energy storage and production (fuel cells and batteries),
and to usage in the chemical industry (catalysts and supports).

The origins of the unusual properties of nanomaterials can be consid-
ered as twofold; (i) the fact that the dimensions of the particles approach,
or become smaller than, the critical length for certain phenomena (e.g. the
de Broglie wavelength for the electron, the mean free path of excitons, the
distance required to form a Frank—Reed dislocation loop, thickness of the
space-charge layer, etc.) and (ii) surface effects dominate the thermody-
namics and energetics of the particles (e.g. crystal structure, surface
morphology, reactivity, etc.). In nanostructured semiconductors it is the
first of these which leads to special electrical, magnetic and optical
properties and the possibility of quantum dot devices. It is also an
explanation of unusual hardness, sometimes referred to as super-hard-
ness, of nanocrystals.['®! The second factor can lead to nanocrystals
adopting different morphologies to bulk crystals with different exposed
lattice planes leading to an extraordinary surface chemistry and catalytic
activity.!'”! The importance of surfaces and boundaries in nanocrystalline
systems is demonstrated in Figure 1.1, which shows the fraction of atoms
in these regions as a function of grain size.

Many of the unusual features of nanocrystalline oxides, such as
superplasticity — the observation of higher strain rates of nanocrystalline
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Figure 1.1 Percentage of atoms in grain boundaries as a function of grain size
assuming boundary widths of 0.5 and 1 nm (after’)



INTRODUCTION 3
ceramics than for their microcrystalline counterparts'’® — are due to
unusually high atomic transport, which has been assigned to the special
nature of the interfaces between the crystallites. The earliest experimental
studies of self-diffusion in nanocrystalline metals yielded diffusion coeffi-
cients many orders of magnitude higher than the values found for bulk
diffusion in single crystals'**®1% and even higher than the values found
for grain boundary diffusion, which is usually regarded as the fastest
diffusion process in a solid. The phenomenon has been regarded as
generic to nanocrystals independent of the interatomic bonding. An
early explanation of the origin of this unusually fast atomic transport was
that the interfaces between the grains in a nanocrystalline compact were
highly disordered in comparison with the normal grain boundaries found in
normal solids. The two types of interface are illustrated in Figure 1.2.
The model assumed for a nanocrystalline sample is drawn schematically
in Figure 1.2a, with extensive disorder in the interface that is several
atoms in width. In this figure the black circles represent atoms in
the grains and the open circles are the atoms in the interfaces. In some
of the early work on nanocrystals this was intuitively assumed to be the
case and the interfaces were referred to as ‘gas-like’ or ‘liquid-like’. This
structure would clearly account for rapid diffusion in nanocrystalline
samples. More recently an alternative view has emerged in which the
nanocrystalline interface is similar to a grain boundary in normal bulk
materials, as shown in Figure 1.2b. In this case the interfaces would
exhibit usual behaviour, although they would be present in unusually
large number, and therefore the compacted nanocrystalline sample
would show higher diffusivity than a coarse-grained counterpart. Since
many of the applications of ionic materials are due to their transport of

Figure 1.2 Two possible models for the interface between nanocrystalline grains:
(a) disordered interface;®! (b) a ‘normal’ grain boundary’, a boundary in a ZnO
bicrystal™®!
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charge by the ions the use of nanocrystalline samples offers an obvious
means of improved performance.

The aim of this contribution is to review nanocrystalline oxides, includ-
ing the current state of understanding of the nature of the materials and
their applications. Our interest is mainly at the fundamental level and
although a number of unusual architectures have recently been developed
for ionic and semi-ionic systems (for example, nanowires,*%! nanobelts,*!!
nanotubes,??! etc., and a range of nanocomposites) we will restrict the
focus to simple nanocrystals. The contribution has been divided into a
number of sections. In order to achieve our aim we will set the scene in the
next section by presenting a survey of the types of oxides and their bonding.
This will be followed by sections on experimental techniques used to
prepare and characterise the materials. The properties and potential appli-
cations of the materials, particularly in sensors, batteries and fuel cells, will
then be discussed. The final section will give an overview of the current
state of knowledge and attempt to foresee future developments in this field.

1.2 OXIDE TYPES; POINT DEFECTS
AND ELECTRICAL CONDUCTIVITY

The binary oxides have a range of electronic structures and can be purely
ionic, n-type or p-type electrical conductors. Metals to the left of the
periodic table tend to produce stoichiometric oxides which are purely
ionic in their bulk form (e.g. alkali and alkaline earth oxides, TiO,, ZrO,,
CeO,, etc.). Metals to the right of the periodic table tend to form oxides
that are not stoichiometric under normal atmospheric condition and are
semiconductors (e.g. SnO,, NiO, etc.). It is important here to briefly
review the defect chemistry of the different types of oxide as it is this
feature which will govern the charge transport in the material and be
affected by moving to the nanometre regime. Details of the defect chem-
istry of oxides can be found in several standard texts and reviews.?>~27!

The defect chemistry of the ionic metal oxides is generally well under-
stood. The interatomic forces are predominantly Coulombic and are well
represented by a simple potential (e.g. the Born—-Mayer equation), hence the
defect energies can be obtained with good accuracy from computer model-
ling."*! In an ionic crystal the point defects formed must maintain electro-
neutrality and therefore will occur in pairs or multiplets.”*?%2°! The basic
point defects are either Schottky defects — cation vacancies and anion vacan-
cies (e.g. MgO), or cation-Frenkel defects — cation vacancies and interstitial
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cations (e.g. Li,O), or anion-Frenkel defects — anion vacancies and interstitial
anions (e.g. the fluorite-structured oxides, such as ZrO, and CeO). Using
the Kroger-Vink notation the equilibrium for the formation of a Schottky
pair in an oxide can be written as

My + Oo & MO + Vy + V5 (1.1)

The Schottky equilibrium constant for this reaction, Kg, is given by a
simple mass-action relationship of the form

Ks =[Vyl[VS] =exp( 57 ) (12)

Here the square brackets represent concentrations (site fractions) of the
defects and gs is the Gibbs free energy to form the defect pair. In fact gg is
the sum of the Gibbs free energies of the individual defects in the pair and
these will be different. In the bulk of a pure crystal there must be equal
concentrations of the two types of defect to maintain electroneutrality, hence

Vil = V3] =K5/* =exp( 72 ) (1.3)

Similar equations can be written for the formation of anion-Frenkel pairs, i.e.
Oo + V& V5 +O; (1.4)

and the defect concentration in the pure crystal will be given by

071 =[Vs] = Kif? =exp( S5 (1.5)
Here K,r and g,f are the anion-Frenkel equilibrium constants and Gibbs
free energy of formation of the pairs, respectively.

The defect concentrations in a pure ionic crystal are usually low.
Typically the site fractions are the order of 10> at the melting point of
the crystal. However, it is possible to increase the concentration of one of
the defects in the pair by selectively adding an aliovalent impurity, a
process referred to as doping. In the context of the systems considered
in this chapter is the doping of the fluorite-structured oxides with lower
valency cations, e.g. divalent alkaline earth or trivalent rare earths
cations. A good example is the doping of ZrO, with Y,0O3, for which
the reaction can be written as

Y,0; %% 2Y. + Vg 4+ 305 (1.6)



