A
ples
p’é"scal

A PROGRAMMING GUIDE

ATICTIBAIUCKET U



Apple Pascal

A Programming Guide

ALLEN B. TUCKER, JR.

Computer Science Program
Georgetown University

HOLT, RINEHART AND WINSTON

New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid



The Apple Pascal system incorporates UCSD Pascal™ and Apple extensions for graphics, sound,
paddles, and other functions.

“Apple” and “Apple Pascal” are trademarks. “Apple™ is a registered trademark of Apple Computer, Inc.
“UCSD Pascal” is a trademark of the Regents of the University of California. Unauthorized use of these
trademarks is contrary to the laws of the State of California and of the Federal Government.

This book is a tutorial guide to Apple Pascal, not a formal specification of the software as delivered to the
buyer now or in the future software revisions. Apple Computer, Inc. makes no warranties with respect to this
book or to its accuracy in describing any version of the Apple Pascal software product.

Copyright © 1982 CBS College Publishing
All rights reserved.

Address correspondence to:

333 Madison Ave. New York. NY 10017

Library of Congress Cataloging in Publication Data

Tucker, Allen B.
Apple Pascal

Includes index.

1. Apple computer—Programming. 2. Apple 11
(Computer)—Programming. 3. PASCAL (Computer program
language) 1. Tiile.

QA76.8.A66T83 001.642 82-912
ISBN .0-08-059547-9 AACR2

Printed in the United States of America
23 039 98765432

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press

Saunders College Publishing



Preface

Pascal has recently emerged as an important language for teaching computer science
concepts and programming methodologies. It is available on a wide variety of compu-
ters, including some microprocessors. Pascal is a language rich in expressive power,
applicable to a wide variety of uses, and yet unusually simple and consistent in its syntax
and semantics.

The purpose of this book is to provide a unified introduction to programming and
Pascal, from the viewpoint of the Apple Pascal system. This system has become very
popular in recent years. We hope that this book will reach the wide variety of interests
represented by those who use Apple computers. This book encourages self-paced
learning and frequent reinforcement of concepts by hands-on programming lab exer-
cises.

These lab exercises are grouped into three different subject areas, which we call
business, math/science, and general. They are organized so that the readers may
consolidate their understanding of any particular programming concept by choosing a
lab exercise in a subject area appropriate to their own interests. For instance, LAB0S
tests the reader’s mastery of elementary loops, using the WHILE construct. The reader
may choose among LABOSB (the business problem), LABOSM (the math/science
problem), or LABOSG (the general problem) to demonstrate that mastery. LABOSB asks
for a program that prints an interest payment table; LABOSM asks for a program that
prints a list of factorials; and LABOSG asks for a program that averages m numbers. All
three require an elementary loop.

This book also reflects our firm belief that a language is best taught by first
introducing a subset that will allow the reader to solve several elementary problems and
master basic programming concepts. We have defined a subset of Pascal and dubbed it
ESP, Eight Statement Pascal. The eight statements of ESP are fully described and
illustrated in Chapter 2, and summarized in Appendix G at the end of the book. We think
that the acronym ESP is particularly appropriate for an introduction to programming,
since there is a kind of sixth sense associated with this delicate art.

We also believe that any complete introduction to programming should provide a
selection of programming problems and topics that truly reflect the variety of ways in
which computers are being used today. To satisfy this requirement, we have collected 60
different programming lab problems (20 in each of the aforementioned subj ect areas). Of
these, LABOI1 through LABOQ6 test essential programming skills and the features of the

vii



viii Preface

different programming lab problems (20 in each of the aforementioned subject areas). Of
these, LABO! through LABO6 test essential programming skills and features of the SSB

subset language. LABO7 through LAB20 are individually associated with the following
topics:

* Arrays

* Subprograms

« Formatted input/output and graphics
* Cross-tabulation and statistics

* Simulation of board games

» File processing

* Natural-language text processing

Thus, the lab problems provide a most varied and representative selection of computer
applications for the uninitiated reader. This broad selection also serves to demonstrate
the versatility of BASIC as a programming language.

The individual chapters should be covered in order. LABO1 through LABO6 should
be done while covering Chapter 2, while LABO7 through LAB20 are keyed to individual
Chapters 4 through 9 in the following manner:

Chapter Lab

4 Simple Arrays 07-09
5 Functions and Procedures 10-12
6 Input/Output Options and Graphics 13, 14
7 Multidimensional Arrays 15, 16
8 Files and Records 17, 18
9 Character Strings 19, 20

There are also exercises, for drill and practice with different elements of BASIC
syntax and program tracing, at appropriate points in the book. Answers to many of these
exercises are provided in Appendix F. No answers are provided for the lab problems
themselves, although helpful hints are given with some.

Most texts which introduce BASIC tend to avoid any hardware-specific details,
leaving the reader to learn for himself or herself the extensions and idiosyncrasies of a
particular BASIC system. We take a different point of view on this matter. To properly
introduce program development, which is the main subject of Chapters 1 and 3, we
cannot avoid system-dependent features, such as “how to change a line of program text.”
Thus, we have integrated all aspects of creating and modifying a BASIC program on the
Apple computer into our discussions of program development. Similarly, we have
included topics such as “how to implement random file access” in the discussion of file
processing in Chapter 8, so that the reader will appreciate this very important pro-



Preface ix

APPLE2:) for running Pascal programs. These steps, as well as the diskette initialization
procedures, are simple and are described in the Pascal reference manual that accompa-
nies the Apple computer.

Many persons have contributed to this book in different ways. 1 would especially
like to thank Georgetown students Jeff Grant and Jay Bellwoar for their creative and
critical evaluations of this manuscript in its various stages. Jeff also typed and proofread
the manuscript, while Jay also designed many of the programming lab problems. I am
grateful also to the reviewers, particularly Ray Geremia, whose advice has helped
improve the programs and the pedagogy throughout. Finally, and most importantly, 1
want to thank my family — Maida, Jenny, and Brian — for their continual love and
support as always.

Allen B. Tucker, Jr.



Contents

Preface

THE COMPUTING PROCESS

1.1
1.2
1.3
1.4
1.5
1.6

Apple Computer Organization

Programs

Program Development: An Overview

Execution Dynamics: A Simple Annotated Example
Preparing a Pascal Program Using the Editor and Filer
Compiling and Running a Pascal Program

LABOQO: Sum of Two Numbers

EIGHT STATEMENT PASCAL (ESP)

2.1
2.2

23

2.4

2.5

The PROGRAM and Compound Statements

Basic Data Types, Values, Variables, and Declarations;
the VAR Statement

Elementary Input/Output; The READLN and WRITELN Statements
LABOI1B: Compute Gross Pay

LABO1M: Acceleration Problem

LABOI1G: Exam Score Average

LABO2B: Bank Balance Problem

LABO2M: Convert to Metric

LABO2G: Reverse Order

Expressions, Standard Functions, and the Assignment Statement
LABO3B: Tax Calculation

LABO3M: Roots of a Quadratic Equation

LABO3G: Cost of a Trip

Elementary Loops; IF and WHILE Statements
LABO4B: Electric Bill

LABO4M: Area of a Triangle

LABO4G: Grass Seed

LABOS5B: Interest Repayment

LABO5M: Factorials

LABO5G: Maximum and Minimum

LABO6B: Checking Account Transactions

LABO6M: Prime Numbers

LABO6G: Count Significant Decimal Places

vii

B

11

17

18
18

19
22
27
28
29
30
31
32
33
40
41
42
43
52
53
54
55
56
57
58
59
60



xii

3 PROGRAM DEVELOPMENT, ERROR CORRECTION, AND

MAINTENANCE

3.1 Top-Down Program Development

3.2 Compile-Time Error Detection and Correction
3.3 Execution-Time Error Detection and Correction
3.4 Additional Editor and Filer Functions

4 SIMPLE ARRAYS

4.1 Array Declaration and Reference

4.2 Input, Output, and Arithmetic

4.3 Additional Control Structures; FOR, REPEAT, and CASE

4.4 An Example; Tabulating Test Scores
LABO7B: Inventory Update
LABO7M: Inner Product
LABO7G: Change Maker
LABO8B: Bank Accounts
LABO8M: Simple Regression
LABOS8G: Bubble Sort
LABO9B: Sales Commission
LABO9M: Monotone Sequences
LABO9G: Array Search

5 PROCEDURES AND FUNCTIONS

5.1 Function Declaration and [nvocation

§.2 Procedures

5.3 Sample Functions and Procedures
LABI10B: Distance Calculation
LAB10M: Random Number Generation
LAB10G: Binary Search
LABI11B: Automatic Test Scoring
LAB11G: A to the B Power
LAB12M: Fibonacci Sequence
LABI12G: Date Conversion

6 FORMATTED INPUT/OUTPUT AND TURTLE GRAPHICS
6.1 Defining Input and Output Formats
6.2 Design of Reports; Headings and Page Numbering
6.3 Intrinsics for Turtle Graphics
6.4 Two Graphics Examples
LAB13B: Mortgage Loan Repayment Tables
LABI13M: Convert Binary to Decimal
LAB13G: Calculating Wind Chill Factors
LABI14B: Bar Charts
LAB14M: Pascal’s Triangle
LAB14G: Calendar Point

Contents

61
62
66
69
70

79
81
82
84
86
93
94
95
96
97
98
99
100
101

102
104
108
111
119
120
121
123
124
125
126

127
127
130
132
138
148
149
150
152
153
154



Contents

7

MULTIDIMENSIONAL ARRAYS
7.1 Cross-Tabulation and Elementary Statistics
7.2 Matrix Calculations
7.3 Simulating Board Games
LAB15B: Market Survey Tabulation
LAB15M: Game of Life
LAB15G: Bingo
LABI16B: Class Scheduling
LAB16M: Gaussian Elimination
LAB16G: Magic Squares

FILES AND RECORDS
8.1 Declaration of Files and Records
8.2 Input/Output and Processing of Records and Files
8.3 Random File Access
LAB17B: Random File Update
LAB17M: Random Sampling
LABI8B: Two-File Merge
LABI8G: Sequence Checker

CHARACTER STRINGS AND THEIR USES
9.1 Declaration, Assignment, and Comparison, Input, and Output
9.2 String Intrinsics
9.3 Basic Text Processing Functions; Word and Sentence Recognition
LABI19B: Mailing Lists
LAB19M: Crytograms
LAB19G: The Palindrome Problem
LAB20B: Personalized Form Letters
LAB20M: Roman Numerals
LAB20G: Count Words and Sentences

APPENDIXES

ol LB - I = R o T -~ B

APPLE PASCAL INTRINSICS

APPLE PASCAL FILER COMMANDS
APPLE PASCAL EDITOR COMMANDS
APPLE PASCAL COMPILER OPTIONS
APPLE PASCAL ERROR MESSAGES
ANSWERS TO SELECTED EXERCISES
SUMMARY OF ESP STATEMENTS

THE APPLE PASCAL CHARACTER SET AND KEYBOARD
REPRESENTATIONS

Index

xiii

155
156
160
163
170
171
173
175
177
180

182
182
185
189
193
194
195
196

197
197
199
202
209
210
211
212
214
216

217
223
226
230
232
237
242

244

245



Chapter 1

The Computing
Process

Computers have a “static” aspect and a “dynamic” aspect. The static aspect consists of
the components, while the dynamic aspect represents the actual movement and man-
ipulation of data that occurs when the components are activated. Both the static and the
dynamic aspects of computers must be clearly understood in order to master the art of
programming itself.

1.1 Apple Computer Organization
We first describe the static aspect of computers, which is known as computer organiza-

tion. Five general components comprise the organization of a computer, as pictured
below:

CPU
[Pt ——— 7]
= Control
i 4
Input .I'L Memory T > Output
I T 3
I Arithmetic
| logic
L

Figure 1-1. The Components of a Computer



2 Apple Pascal: A Programming Guide

In the center of Figure 1-1 is the computer’s central processing unit, or CPU.
Leading into the CPU from the left is the input, and leading out to the right is the output.
The CPU itself has three parts; the memory, the control, and the arithmetic/logic
circuitry.

The arrows that connect these components denote paths through which information
can flow. That is, information can flow from the input to the memory, from the memory
to the output, and in either direction between memory, control, and arithmetic/logic.

Figure 1-2 shows a picture of an Apple computer, with its five basic components
identified. Here, the reader can get an idea of what these components actually look like.

Output

- /(displuy screen)

Input/Output

QOutput
(printer)

/

il A

(keyboard)

Figure 1-2. Components of an Apple Computer. (Courtesy of Apple Computer Inc.)

The memory of a computer holds two kinds of information, the program and some
data. The program itself consists of a series of instructions that tells exactly what steps to
perform. These instructions are actually carried out, or “executed,” by the control unit.
Some of the instructions tell the control to transfer information from the input to the
memory; this is known as a “read” operation. Others tell the control to transfer
information from the memory to the output; this is known as a “write” operation. Still
others tell the control to perform an arithmetic operation (e.g., addition) or a comparison
of two data values (e.g., to see which is greater). These kinds of operations are actually
carried out by the arithmetic/logic part of the CPU.

Now, the actual inpur and output information can be represented in any of several
different “‘computer-readable” media, inciuding punched cards, an interactive terminal,
video display, printed paper, magnetic tape, magnetic disk, and so forth. Shown with the
Apple in Figure 1-2 are two magnetic disk units, an interactive terminal, video display,
and a line printer. Each magnetic disk unit holds one cartridge, called a “diskette,” which



The Computing Process 3

may contain programs and data. Diskettes may be interchangeably mounted on the disk
drive, but at any one time only one diskette may be present.

Figure 1-3. A Diskette.

1.2 Programs

The program is a sequence of instructions which, when executed by the control unit,
defines exactly what should be done with the input data in order to produce a particular
output. Thatis, the program specifies the “*dynamic™ aspect of the computer. Without the
program, the components described in the foregoing section would be just a passive
collection of hardware.

Functionally, the program is like a recipe; followed precisely, the recipe will yield
the desired result. Yet, a program must be precisely and. sometimes. excruciatingly
specified in order to fully define the task to be performed. Also, like a recipe, the
program must be written in a very exact syntactic form, in order to be understood and
properly executed. This form is known as the programming language.

There are many different programming languages in use today, such as ALGOL,
COBOL, FORTRAN, PL/1, APL, SNOBOL, LISP, and Pascal. Each has its special
strengths in one of the wide variety of application areas where programmers are
working. In this book, we shall teach the programming language Pascal, because it is
widely known, encourages good programming style, is easily taught and learned, and
can be effectively used in the various programming situations that occur in mathematics,
science, business, the humanities. government, and personal computing.



4 Apple Pascal: A Programming Guide

Because Pascal is a rather extensive language, we shall first teach an elementary
part of it, so that the reader may master basic programming techniques before proceeding
to advanced material. We have dubbed that elementary part as “Eight Statement Pascal,”
or ESP for short, which is the subject of Chapter 2. Additional Pascal features will be
described, illustrated, and exercised in later chapters.

1.3 Program Development: An Overview

Although we teach the programming language Pascal, we have a far more important
purpose in this book. That is, we shall introduce and teach the elements of program
development. 1t is one thing to follow a recipe successfully and end up with an edible
cake. But it is quite another to design and correctly describe the recipe in the first place.

More precisely, program development has as its purpose to design and demonstrate
the correct functioning of a (Pascal) program that carries out a prescribed task. Examples
of typical “prescribed tasks™ are the following:

A. Add two numbers and display the resulting sum, given the original two
numbers.

B. Compute the average of all three tests taken by each student in a class of 25,
given the original 75 individual test scores (3 per student).

C. Translate a text from Spanish into English, given the original Spanish text.

As the reader can see, these examples range in difficulty from trivial to complex. Thus is
the domain of program development. In this book, most of the program development
tasks are like that of Example B; not trivial but achievable in a reasonable amount of
time.

We prescribe these tasks as so-called “labs,” numbered LABOQ through LAB20.
LABOO will be presented, programmed, and discussed in its entirety in this chapter; in
fact, LABOO is Example A given above. The labs are organized into three general subject
area groups: “business,” “math/science”, and “general”. Readers are encouraged to
select labs that correspond with their subject-area interests. Labs are coordinated so that,
for instance, LAB13B (that is, a business task) and LAB13M (that is, a math/science
task) exercise the same Pascal features and program development techniques. (The
suffix B, M, or G affixed to the LAB number identifies its subject-area as business,
math/science, or general, respectively.)

Returning to the question of program development, this process can be subdivided
into the following sequence of distinct steps:

Problem specification

Algorithm design

Program coding

Program preparation

Program execution

Program diagnosis and error correction

AR el



The Computing Process 5

The following paragraphs describe each of these steps, using the above Example A for
illustration.

1. Problem Specification: A clear and concise statement of the programming
problem to be solved is, of course, a prerequisite to the development of the program
itself. Recall the problem statement of Example A:

add two numbers together and display the resulting sum, given the original two
numbers.

There is a kind of innate tedium in any such problem statement, which is due to the
requirement for precision and completeness. The statement must always be reflective of
the general capabilities and limitations of computers and programming. Moreover, the
problem statement must be totally clear and fully comprehensible to the person who will
write the program.

In this book, the programming problem statements are already developed, in the
form of LABOO through LAB20. Our purpose here is to teach programming and problem
solving skills, rather than to teach the development of problem statements themselves.
The area of computing in which problem statements are developed is known as systems
analysis and design.

One element of a good problem statement is that it not only portrays the program-
ming task to be performed (e.g., “add two numbers” in Example A) but also identifies
the input data (e.g., “given the original two numbers™) and the desired output (e.g.,
“dispay the resulting sum™).

2. Algorithm Design: Here, the programmer translates the problem statement into
a precise description of how the computer program will solve the problem. In general,
algorithm* design begins with a sketch, in English, of the sequence of steps that the
computer should follow to solve the problem. At this point, the programmer identifies all
memory locations, known as variables, that are necessary for the program to perform
properly. A memory location can be visualized as a place within the computer’s memory
which can hold a single data value, such as a number or an alphabetic character. A
variable can be visualized as a memory location which is associated (by the program)
with a unique name, such as A or SUM. For instance an algorithm design for Example A
can be given as follows:

i. Identify A and B as the variables which will contain the two numbers to be
added, and SUM as the variable which will contain their sum, as shown in the
following picture of memory:

memory

*The term “algorithm” means “a precise description of a computing task which will terminate in a
finite number of steps.” That description can be done in any suitable language, such as English or
any programming language (e.g., Pascal, FORTRAN, COBOL, PL/I, BASIC, . . .). When done
in a programming language, the algorithm is known as a “program.”



6 Apple Pascal: A Programming Guide

ii. The sequence of steps required to solve this problem are:
a. transfer the two numbers from the input to variables A and B respectively.
b. Add the values of A and B, leaving the result in SUM.
¢. Transfer the value of SUM to the output.

An algorithm design always presumes certain overall operational or mechanical charac-
teristics of computer programs:

+ that the input values must be brought into specific memory locations, or vari-
ables, before any arithmetic or other operations can be performed with them.
¢ that the computer’s control unit carries out the individual steps of a program in the
order in which they are written.

¢ that the result(s) of a program must be transferred from memory to the output in
order for it to be displayed. The memory is an electronic medium, hidden from
view. The input and output (e.g., a terminal screen or a printer) provide visible
representations for data values and results.

To illustrate, the following diagram shows a complete configuration of input data,
program, variables, and output immediately before steps a, b, and c of the algorithm are
carried out by the computer’s control unit:

memory

a. Transfer the two numbers from
the input to A and B.

b. Add the values of A and B,
leaving the result in SUM.

input c. Transfer the value of output
17 SUM to the output.
31
A
B
SUM__

Here, the algorithm is given 17 and 31 as two sample input values. In general, an
algorithm is designed to handle any input that is suitable to the problem statement (e.g.,
any pair of numbers, in the case of Example A).

After the control has carried out all three steps specified by the algorithm, the
resulting configuration will be as shown below:

memory
a. Transfer...
input b. Add. .. output
A7 c. Transfer...
31 A 48




The Computing Process 7

In executing step a, the input numbers 17 and 31 are transferred to variables A and
B, as shown. This is known as a “read” operation. In executing step b, the values of A
and B are added together and the result is then stored in SUM, as shown. This is known
as an “arithmetic operation,” followed by an “assignment” of the result to SUM. In
executing step c, the value of SUM is copied to the output (terminal or printed paper) as
shown. This is known as a “write” operation.

Note that, in a read operation, the input values are transferred rather than copied.
This implies that they are no longer available to be read in a later step. In a write
operation, however, the variable’s value is copied to the output medium, thus leaving the
value intact in memory for use by a subsequent step in the program. Finally, all
arithmetic operations and assignments must use values that are already in memory (e.g.,
by virtue of a previous read operation). Thus, the input value 17 shown above cannot
directly take part in an arithmetic operation, but the value of the variable A (which is 17)
can!

3. Program Coding: After the algorithm is fully designed, the program can be
written, or “coded,” in a programming language (such as Pascal). Although we have
given the impression in previous sections that computers can execute English-language
programs directly, the truth is that they cannot. Instead, they can understand only
statements that are written in a programming language, and no others. The following is a
complete Pascal program for the algorithm that was developed in previous sections:

PROGRAM P;
VAR A, B, SUM : INTEGER;
(* THIS PROGRAM SUMS TWO INTEGERS *)
BEGIN
READLN (A,B);
SUM:=A+B;
WRITELN (SUM)
END .

The first line identifies the program, while the second line defines the variables needed
by it. The third line is a “‘comment,” and is inserted for documentation purposes. It has
no effect on the actual execution of the program. Comments, in general, can be inserted
anywhere within a Pascal program, provided they are enclosed in (* and *). The three
lines between BEGIN and END describe the three steps required to accomplish the
task—namely, a read operation, an arithmetic and assignment operation, and a write
operation. These will be more fully explained in the paragraphs below.

4. Program Preparation: After the program has been coded, it is then entered at
the terminal. Program preparation is fully described for the Apple in Section 1.5 below.

S. Program Compile and Execution: Before the computer actually executes the
steps of the Pascal program, a “compiler” first scans the program’s text to be sure that the
steps are properly written (i.e., syntactically correct) and that the entire text represents a
complete Pascal program. If not, it will note all syntactic errors and not proceed into
actual execution of the program. If the program is correct, it is translated by the compiler
from Pascal into the language of the computer on which it is to be executed. In the Apple
vernacular, the original Pascal program is known as a “TEXT file,” while its machine



8 Apple Pascal: A Programming Guide

language version is known as a “CODE file.” This whole activity is known as the
“compile step” for a program, and is fully explained in Section 1.6 below.

If the program is correct as determined by the compile step, with no syntactic
errors, the computer will proceed to execute the resulting CODE file and produce output.
This activity is known as the “execution” step for a program. Below are the results of
executing the program shown above:

17 31
48

The first two numbers, 17 and 31, are the input numbers that are typed at the terminal in
response to the READLN statement. The third number, 48, is the output produced by the
WRITELN statement at the time it was executed. Note here that these three numbers
which appear on the screen are not very informative by themselves. Later, we shall
discuss how to refine programs, using “‘prompts” and other documentation, so that what
appears on the screen is truly informative. At the moment, we are concentrating only on
the basic programming, compiling, and execution process by itself, and these additional
details would tend to confuse matters at this early stage in the book.

6. Program Diagnosis and Error Correction: The correct results may not neces-
sarily be achieved by the first run of a program. More typically, two, three, or more runs
are needed before the desired output is achieved. Three different types of errors can be
made in the process:

i. Syntactic, or “compile-time,” errors—these result from failing to write Pascal
statements properly, and are noted during the compile step of the run.

ii. “Execution-time” errors—these occur during the execution step, and are noted
by the computer in the output of the run.

iili. Design errors—These errors result from writing a syntactically correct prog-
ram, having it run, but achieving output that is incorrect, according to the
original problem statement. These are not noted at compile time or execution
time, since the computer has no way of knowing the original problem state-
ment.

To illustrate, suppose we had incorrectly written the Pascal statement
“SUM:=A+B"” as “SUM:=A+" instead. This compile-time error would have been
noted as shown below:

ERROR IN <FACTOR> (BAD EXPRESSION)
Thus, a compile-time error is easy to detect and diagnose, since the message is

mnemonic and the cursor is placed at the position in the program display where the error
occurred.



