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Principles and Practice is a revolutionary text which we wrote in order to change
the undergraduate mathematics curriculum. Revolutions are started for two
reasons: to overturn the status quo, and to realize a vision of the future. Why
do we at COMAP think now is the time to incite change through the prepa-
ration of this text which, after all, proposes a radically new introductory course
for undergraduate mathematics?

The central importance of mathematics in our technologically complex
world is undeniable, and the possibilities for new applications are almost end-
less. But at the undergraduate level, little of this excitement is being conveyed
to our students. Currently, attention is being focused on reforming calculus,
the traditional gateway course into the undergraduate curriculum. No one is
questioning the importance and beauty of continuous mathematics. However,
reformed or not, calculus is one branch (and a highly technical one) of a very
rich subject. We know the breadth and richness of our subject; how, then, do
we expect the students who are starting their study to gain these insights?

In seeking answers to this question, we identified a model which has been
in place throughout college science curricula. Every science department offers
an introductory course that focuses on developing basic principles and concepts,
and at the same time introduces students to the range of the subject—chem-
istry, physics, biology, etc. The “101-102” sequence usually serves as a pre-
requisite for further courses. Our proposed new start or gateway into the college
mathematics curriculum is only a revolutionary idea for our discipline; other
disciplines have had such courses in place for years.

Our project started more than five years ago, with funding from the Di-
vision of Undergraduate Education of the National Science Foundation. We
asked ourselves a simple question: in designing the first undergraduate course
for math and science majors, what should such a course look like? The contents

of Principles and Practice of Mathematics represents our most considered answer
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to this provocative question. The course content stresses the breadth of math-
ematics, discrete and continuous, probabilistic as well as deterministic, algo-
rithmic and conceptual. We emphasize applications that are both real and
immediate. And the text includes topics from modern mathematics that are
currently homeless in the undergraduate curriculum.

We should stress that the level of mathematics included here is not trivial.
The audience for this text should not be confused with that of terminal courses
such as surveys of mathematics for liberal arts students, or finite mathematics.
Throughout the writing, class-testing, and revising, we have aimed for a level
of presentation equivalent to a conventional first-year calculus course. The typ-
ical student for this text will have completed the standard prerequisites for
studying calculus.

Even for those students who take just a year of college-level mathematics,
we will have achieved something of considerable value. For the year’s worth of
attention and effort they give to mathematics, they will gain a wider under-
standing of what mathematics is all about, including some of its most modern
ideas and applications. Currently, if a student drops out of mathematics after
a year of calculus, he or she has no idea of how mathematics provides a con-
ceptual base for computer science, has only a limited concept of abstraction,
and, perhaps most damning as we approach the twenty-first century, has seen
little or no mathematics more modern than the eighteenth century. Such a
student is unaware of subjects such as graph theory, linear programming, and
combinatorial optimization, subjects which are taught to beginning students
in other disciplines and which appear from time to time in newspapers and
popular science magazines.

The adoption of this text, we realize, might mean redesigning the curric-
ulum—and that will not happen overnight. Because of the variety in kinds of
schools and programs of study, we expect many trial sections and experimental
courses to be offered. While the book is intended for use over two semesters,
it is organized so that chapters and sections can be covered selectively and
adapted easily for one-term courses.

This book is a team effort in which authors looked over each other’s shoul-
ders during numerous team meetings. However, primary writing responsibil-
ities were: David Arney and Frank Giordano, Chapter 1; Robert Bumcrot,
Chapter 2; Alan Tucker, Chapter 3; Rochelle Wilson Meyer, Chapters 4, 6, 7;

Preface



Paul Campbell, Chapter 5; Michael Olinick, Chapter 8; Joseph Gallian, Chap-
ter 9. The editor wishes to thank each of these authors for being splendid team
players as well as talented expositors.

A revolution is the work of many hands, and a project of this magnitude
could not be completed without extensive assistance. In particular we would
like to thank the National Science Foundation for its steadfast support under
the DUE program.

We were fortunate to have a highly talented group of project advisors: Saul
Gass, Andrew Gleason, Zaven Karian, Joseph Malkevitch, David Moore, Henry
Pollak, Paul Sally, Laurie Snell, Marcia Sward, and Gail Young.

In addition, special thanks go to: John Burns, for careful reading of early
drafts, Sheldon Gordon who contributed much to the early work on Chapter
1, Zaven Karian for technology advice, Harald Ness who wrote many of the
problems in Chapter 8, and Yves Nievergelt for contributing spotlights.

We also wish to thank all the participants at the West Point workshops
of 1994 and 1995, including especially P. Baker, M. Gallit, A. Lebow,
C. Lindsey, J. Orlett, B. Reid, P. Rose, S. Seltzer, F. Serio, M. Vanisko; field
testers of the early drafts; those who have read and criticized early drafts,
including R. Bradley, J. Buonocristiani, M. Fegan, M. Grady, R. Griego,
D. Knee, P. Lindstrom, F. Meyer, T. Walsh, W. Williams, J. Wynn.

Last, but not least, we would like to thank our editors, Jerry Lyons, Liesl
Gibson, and Teresa Shields for their commitment to this book.
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Introduction

Change is all around us. Wherever we look, things
are changing. We see it in such varied phenomena
as

> the path of a perfectly thrown pass in football
or the regal motion of the planets around the
sun,

> the growth of a human being from infancy
through old age or the growth of the entire
human population on Earth,

> the temperature change of a cold potato put
into a hot oven or the global warming patterns
that threaten our very existence,

> the growth of money deposited in a bank ac-

count or the growth pattern of our balance of
trade deficit.

All of these changing phenomena can be inves-
tigated mathematically. Many of them can be de-
scribed very effectively by mathematics, and in such
cases we can accurately predict what will happen.
For instance, the orbits of the planets are ellipses;
knowing that precise mathematical relationship al-
lows scientists to calculate the trajectories of man-
made satellites so that they reach the desired target.
Similarly, the path of the football is a parabola; the
quarterback, like the rocket scientist, wants his “sat-
ellite” to arrive at the correct spot at the precise in-
stant that the receiver passes through that point.



Population growth patterns tend to be exponential
in nature; if current population trends continue un-
changed, the population of Mexico will surpass that
of the United States somewhere around the year
2051.

In the present chapter, we will develop some ex-
traordinarily powerful, yet simple, mathematical
tools that will enable us to study change in a wide
variety of areas. To do so, we must consider some
basic ideas. First and foremost, the very fact that a
quantity changes means that the quantity varies with
respect to some other quantity. That is, the quantity
of interest to us, say position or temperature or pop-
ulation, depends on some other quantity, say time.
Consequently, the quantity of interest will always be
a function of time or some other independent variable.
For example, if we roll a bowling ball with a forward
velocity of 30 ft/sec, after # seconds the distance (4)
is approximately expressed as a function of # by 4 =
30z. An example of a function where the indepen-
dent variable is not time is the circumference of a
circle (C), which is a function of the radius (r) ex-
pressed by the formula C = 2mr.

DEFINITIONS

A function is a rule or procedure for producing
output values from input values of the independent
variable.

The set of the possible values of the independent
variable is known as the domain of the function.

The possible values for the dependent variable are

known as the range of the function.

Because the independent variable represents an
actual quantity, in the real world, such as time, it
naturally is limited in terms of the values we can
intelligently use. This set of the possible values of

2 Chapter 1 +« Change

the independent variable is known as the domain of
the function. Similarly, because the quantity of in-
terest, the dependent variable, represents an actual
quantity, it is also limited in terms of the values it
can assume. These possible values for the dependent
variable are known as the range of the function.

For instance, if we are considering the popula-
tion of North America over time, then the domain
might be limited to the interval from — 15,000 (that
is, 15,000 B.C., approximately when anthropologists
believe the first settlers crossed the land bridge be-
tween Siberia and Alaska) to A.D. 2100 (it is ex-
tremely difficult to extrapolate very far into the fu-
ture with any hope of accuracy). The range for
population values would then extend from a mini-
mum of zero to a maximum of potentially half a
billion (approximately double the present popula-
tion). Alternatively, if we are interested in the pop-
ulation of the United States, then the domain is lim-
ited from 1776 to 2100, say, and the range would
be from 2.75 million to about half a billion.

Let’s consider how we might represent functions.
In previous courses you were probably led to believe
that all functions are expressed as an explicit formula
of the form y = f(x). While this is true of many
situations, we often have to deal with cases where no
such formula is known. For example, in a daily lot-
tery, the winning number is a function of the day—
in the sense that for each day, there is a definite
winning number associated with it—but we have no
formula for the lottery to help us get rich.

The study of population presents interesting is-
sues in how we represent functions. Typically, we
begin with a table of values, which is a way of pre-
senting a function. For example, the population of
the United States in millions from 1780 to 1990 is
presented in Table 1. Here the domain is the 22
years that end in 0: 1780, 1790, ..., 1990.

These population numbers are all approxima-



TABLE 1 The U.S. Population.

Population Population
Year (millions) Year (millions)
1780 2.78 1890 62.95
1790 3.93 1900 75.99
1800 5.31 1910 91.97
1810 7.24 1920 105.71
1820 9.64 1930 122.77
1830 12.87 1940 131.67
1840 17.07 1950 150.70
1850 23.19 1960 179.32
1860 31.44 1970 203.30
1870 39.82 1980 226.55
1880 50.16 1990 248.71

tions. No census is completely accurate, and the
number for 1780 was not obtained from a systematic
census anyhow (the first official U.S. census occurred
in 1790).

We might choose to represent such a function
via a graph, as shown in Figure 1, which rises from
0 to the population in 1990, about 250 million. No-
tice that although the graph is not as precise as the
table of values appears to be, it quickly gives us a
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Ficure 1 U.S. population.

qualitative feel for the trends present in the change
we are observing.

Notice in Figure 1 that the graph is reasonably
smooth, showing an upward trend. We will see that
we can capture the trend with the following formula
(or function), which approximately predicts the U.S.
population, p(x), in year x:

px) = (203,211,926)200216:=1970) (1)
For example, for the year x = 1980, the formula
predicts
P(1980) — (203,211,926)20‘0216(1980_1970)

236,032,426.

which we can compare to the 226.55 million actu-
ally recorded.

We have seen that there are different ways to
express a function: as a formula, as a graph, and as a
table of observed data. All of these arise in the real
world, and we must be able to interpret the behavior
of the quantity they represent in each instance.

Equation (1) can clearly have any value of time
plugged into it, not just 1780, 1790, 1980, etc. This
gives us a way to estimate the population for inter-
mediate times, like 1982, 1943.78, and so on. If we
wish to do this, we are saying, in effect, that the
domain of the function now consists of all the infi-
nitely many numerical values between 1780 and
1990, i.e., the interval [1780, 1990]. We could even
go out on a limb and use the formula to try to predict
the population of 2000, by declaring the domain to
be [1780, 2000]. If we were to draw the graph of
the function with the interval [1780, 2000] as its
domain, we get an unbroken curve like that of Figure
2 instead of a series of dots.

We have now seen a number of examples of func-
tions and domains, so let’s summarize the important
points.

Section 1.1 =« |Introduction 3
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population.

One quantity y, often called the dependent var-
iable, is said to be a function of another quantity x,
often called the independent variable, if there is a
certain domain of x-values where each x-value has a
single, definite y-value associated with it. A set from
which these associated y-values come is called the
range. The domain and range can be finite or infinite
sets. Not all functions can be represented by a for-
mula, although most of the ones of interest to us will
be. Tables and graphs are other ways in which func-
tions can be represented.

In particular, when we speak of the behavior of
a function or a quantity, there are several specific
aspects that are typically important to know, as
shown in Table 2.

Difference Equation Models and

Their Solutions

In this chapter we will learn about a particular kind
of mathematical model called a difference equation
model. We will learn how to build such a model, find
what it means to solve such a model, and see how
solutions can be found. The solutions will be func-
tions, represented as formulas, graphs, tables, or se-
quences of numbers. Finally, we will learn how to

4 Chapter 1 +« Change

TABLE 2 Important Characteristics of a Function.

When is it increasing?

When is it decreasing?

What is its maximum value?

What is its minimum value?

When is the rate of increase increasing?

When is the rate of increase decreasing?

When is the rate of decrease decreasing?

When is the rate of decrease increasing?

When is it increasing or decreasing most rapidly?

What are its roots? (When is its value equal to 0?)

Is it periodic? (Do the function values form a repeating
pattern?)

analyze our solutions to determine the characteristics
outlined in Table 2. Let’s preview what is in store
for us.

Discrete and Continuous Change

In many cases, the behavior we are observing changes
abruptly at instants of time separated by periods
when no change occurs (Figure 3). For example, the
amount owed on a mortgage or car loan changes
when interest is charged and a payment is made. The
value of a stock portfolio changes when a dividend
is declared or the market value of a share changes at

3,000 1 —

2,000 —

1,000 —

Amount owed (dollars)

—T—T—TT T T T T T T Lime (months)
1 2 3 12

FiGURE 3 Amount of a loan still outstanding at various
times.
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