<

NOGRAIVIVIINCG
i a2

HABIB T. KASHANI

Programming in C++
An Applied Approach

Habib T. Kashani

Langara College

|

Prentice Hall

Upper Saddle River, New Jersey Columbus, Ohio

Library of Congress Cataloging-in-Publication Data

Kashani, Habib T.
Programming in C++: an applied approach/Habib T. Kashani.
p. cm.
Includes bibliographical references and index.
ISBN 0-13-228818-4
1. C++ (Computer program language) 1. Title.
QA76.73.C153K37 1998
005.13'3--dc21 97-17979
CIP

Cover photo: Digital Art, Westlight

Editor: Charles E. Stewart, Jr.

Production Editor: Stephen C. Robb

Design Coordinator: Karrie M. Converse

Cover Designer: Rod Harris

Production Manager: Patricia A. Tonneman

[llustrations: Custom Editorial Productions, Inc.
Production Supervision: Custom Editorial Productions, Inc.
Marketing Manager: Debbie Yarnell

This book was set in Times Roman by Custom Editorial Productions, Inc., and was printed
and bound by Quebecor Printing/Book Press. The cover was printed by Phoenix Color Corp.

= © 1998 by Prentice-Hall, Inc.
= Simon & Schuster/A Viacom Company
= Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
1098 7654321
ISBN: 0-13-228818-4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto

Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To my wife, Nahid, and my children, Mathew, Suzanne, and Cyrus.

Preface

Programming in C++ is intended to meet the needs of both the student and the professional
programmer. This book may be used in a second programming course, after an introduc-
tory course in computers and programming, for students with computer science majors and
students with other majors. It may also be used as a supplement to an introductory com-
puter science or software engineering text, if the topics take students into abstract data
types and object-oriented programming. In addition, this text is recommended for students
of computer information systems (CIS), business, technology, and continuing education
programs. Finally, professional programmers who want to learn how to write programs in
C++ and those who are looking for a resource reference will find this text useful.

PEDAGOGICAL APPROACH

This book’s thorough treatment of C++ includes a comprehensive view of the features of
the language as they apply to both structured programming and object-oriented program-
ming. The book’s focus is the fusion of concepts and applications; its purpose is to demon-
strate how to apply theory to practical problems. To that end, concepts move from simple
to complex so that each one is a foundation for the next level. Each concept is discussed in
a clear and concise manner to make the learning process enjoyable, fast, and effective.
The discussion of each concept includes a variety of examples, which demonstrate
how to apply the concepts and reinforce the principles of good programming. Each major
topic is followed by a list of self-check questions and exercises, for which answers are sup-
plied at the end of the book. Moreover, since the best way to learn how to write good pro-
grams is to see well-written ones, several sample programs, with internal documentation
and necessary comment lines, are included at the end of each chapter. The sample pro-
grams are deliberately placed at the end to provide full discussion of the material without
interruption, making the discussions more cohesive and understandable. Although the

vi

PREFACE

programs presented here have been tested using the Borland C++ compiler, they were de-
signed to work without modification on almost any C++ compiler.

Finally, the style tips at the end of each chapter tell students how to write programs
that are easy to read and maintain. They include schemes for using meaningful identifiers
and specifying their case and symbol set (e.g., DaysOfWeek or days_of week or
Days_Of_Week) as well as methods for documenting the program, its interfaces, and
classes. The intent behind this initiative is to develop and establish a consistent style in
writing code. Good programming style also makes the programmer a more productive
team member in a joint development project.

ORGANIZATION OF THE BOOK

Programming in C++: An Applied Approach is organized into six chapters, each of which
covers a group of logically related topics. The chapters cover almost all facilities of the
language in an orderly manner and explain the mechanical underpinnings of C++ sup-
ported by application examples for each topic. This innovative approach assures easy pro-
gression for the novice and offers a clear reference for the professional.

* Chapter 1 provides the fundamental programming concepts of C++. To ensure thor-
ough understanding, readers should study the material in the sequence in which it is
presented. The chapter also covers in detail the standard //O facilities of the language.

* Chapter 2 focuses on more advanced topics, including language constructs, arrays and
strings, pointers and references, and storage management.

® Chapter 3 discusses functions and describes in considerable detail how they interact
with each other, the way in which they are invoked, and the values that are returned, as
well as storage classes, scope rules, and lifetime of variables.

® Chapter 4 covers the features that help readers develop more advanced applications.
Topics include enumerated data types, the type definition construct (zypedef), different
types of C++ functions, library functions, the preprocessor, and command line argu-
ments.

® Chapter 5 addresses the structures and techniques for file processing. Structures and
unions, bitfields, classes as unique C++ features, and an in-depth discussion of files are
the topics of this chapter. Because there is some variability in readers’ comprehension
of these topics, the chapter is aimed at presenting them with the means to understand
thoroughly, to design readily, and to implement easily the structures and files.

¢ Chapter 6 introduces the notion of an Abstract Data Type (ADT) and its practical use in
object-oriented programming. The chapter gives students a clear understanding of the
advantages of object-oriented programming before they invest time and effort to learn
how to do it. To that end, it presents many ADTs of different levels of complexity. Fi-
nally, the chapter takes the reader through the design and implementation of each ADT
in the following steps:

Specifications
Representation
Implementation
Application

PREFACE vii

Since the most important advance offered by C++ is its support for object-oriented
programming, the level of detail in this chapter is considerably higher in order to address
adequately the prominent features of the language, including:

* Classes

* Constructors and Destructors

® Inheritance

* The Keyword friend

® Virtual Functions and Dynamic Binding
* Polymorphism

* Pure Functions and Abstract Classes
Static Members

Operator Overloading

Type Conversion

Generic Classes Using Templates and Void Data Types
Embedded Objects

ACKNOWLEDGMENTS

I would like to thank the following students at Langara College for their comments and
suggestions: Balash Akbari, Kristian Erickson, Raymond Chan, Yan Teplitsky, and
Graham TerMarsch.

In addition, I express sincere appreciation to the following colleagues who provided
valuable input for the manuscript: Judy Boxler, Michael Kuttner, Pierre Massicotte, and
Fred Parvaz.

I also thank executive editor Charles E. Stewart for his encouragement, support, and
patience, and the other good people at Prentice Hall, Steve Robb, Kate Linsner, and
JoEllen Gohr.

Finally, I gratefully acknowledge the contribution of these reviewers for their comments,
criticism, and helpful suggestions: Michael Bush, Carl C. Hommer, Jr., Usha Jindal, and
Philip Regalbuto.

Habib Kashani
Langara College

Brief Contents

FUNDAMENTAL CONCEPTS

CONTROL STATEMENTS, ARRAYS, POINTERS, AND
REFERENCES

FUNCTIONS
FEATURES AND FACILITIES
STRUCTURES, CLASSES, UNIONS, AND FILES

DATA ABSTRACTION AND OBJECT-ORIENTED
PROGRAMMING

APPENDIXES
BIBLIOGRAPHY

INDEX

43

83

117

159

207

309

341

343

ix

Contents

FUNDAMENTAL CONCEPTS 1

1.1 Preview 1
1.2 A Historical Overview of Programming 1
1.3 The Origin of the C++ Language 2
1.4 Program Structure 3
1.5 The Elements of C++ 6
Functions 6
Identifiers 8
Literals or Constants 9
Operators 9
Expressions 20
Conversion and Casts 21
Statements 22
Comments 24
1.6 Data Types 24
Integral Types 24
Character Types 25
Real Types 25
1.7 Variable Declaration and Scopes 25
1.8 Standard Input-Output Operations 27
Formatting I/O 29
The C++ Manipulators 31
Input Operations Revisited 31
Output Operations Revisited 33
Other I/0 Facilities 34

xi

xii

CONTENTS

Summary 35

Style Tips 36

Sample Programs 36
Programming Assignments 40

CONTROL STATEMENTS, ARRAYS, POINTERS, AND

REFERENCES
2.1 Preview 43
2.2 Control Statements 43
Selection Statements 44
Repetition Statements 51
2.3 Arrays 57
Declaration of Arrays (Arrays with One Dimension) 58
Operation on Arrays 58
Multidimensional Arrays 60
2.4 Pointers 61
Important Considerations 63
The Application of Pointers 64
Pointers and Arrays 65
Pointers to Void 69
2.5 References 70
Initialization Issues 71
Pointers and References 71
2.6 Storage Management 71
Summary 74
Style Tips 75
Sample Programs 76
Programming Assignments 81
FUNCTIONS
3.1 Preview 83
3.2 General Information 83
3.3 Considerations 84
3.4 Function Parameters or Arguments 85
Value Parameters 86
Reference Parameters 87
Pointer Parameters 88
Constant Parameters 91
3.5 Constant Functions 92
3.6 Functions Returning a Pointer 92
3.7 Functions Returning a Reference 94
3.8 Pointer to Functions 95
3.9 Storage Classes 99

The Automatic Class 99

43

83

CONTENTS

The Static Class 99
The Extern Class 101
The Register Class 101
3.10 Scope of Variables 102
Block Scope 102
File Scope 103
Function Scope 103
Summary 104
Style Tips 105
Sample Programs 106
Programming Assignments 112

FEATURES AND FACILITIES

4.1 Preview 117
4.2 The Enumerated Data Type 117
4.3 Typedefof C++ 120
4.4 Templates 122
4.5 Types of Functions in C++ 123
Inline Functions 123
Overloaded Functions 124
Functions with Default Arguments 126
Functions with Variable Declaration Placement 127
4.6 Common Libraries 129
4.7 The Preprocessor 138
Definition of Constants 139
Definition of Macros 140
Built-in Macro Names 142
Conditional Compilation 143
File Inclusion 145
Special Operations 146
4.8 Command-Line Arguments 147
Summary 149
Style Tips 150
Sample Programs 151
Programming Assignments 156

STRUCTURES, CLASSES, UNIONS, AND FILES

5.1 Preview 159

5.2 Structures 159
Declaration of a Structure 161
Accessing Structure Fields 161
An Array of Structures 164
Structure Member Initialization 164
Pointers to Structures 164

xiii

117

159

xiv

CONTENTS

53
54

5.5

Assignment of Structures 166
Bitfields 167
Functions as Structure Members 168
Classes 171
Unions 172
Application of Unions 173
Files 177
Sequential Files 178
Direct Access or Random Files 178
Text Versus Binary Files 178
File Processing in C++ 179
Files as Function Parameters 189
Summary 190
Style Tips 191
Sample Programs 191
Programming Assignments 203

DATA ABSTRACTION AND OBJECT-ORIENTED
PROGRAMMING

6.1
6.2
6.3
6.4
6.5
6.6

6.7

Preview 207
The Notion of Abstraction 207
Data Abstraction 208
C++ and Data Abstraction 210
Designing and Implementing Abstract Data Types 211
C++ Class 211
The Constructor Function 214
The Destructor Function 217

Overloaded Constructors (Default, Parameterized, Copy) 219

Constructor Conversion Functions 225

From Data Abstraction to Object-Oriented Programming 226

Encapsulation 227

Inheritance 228

Polymorphism 232

Virtual Functions 232

Pure Virtual Functions and Abstract Classes 234
Polymorphism Revisited 236

Virtual Base Classes 239

The This Pointer 242

Static Data Members and Static Member Functions 245

Constructors in the Base and Derived Classes 248
Destructors in the Base and Derived Classes 248
The Keyword Friend 251

Type Conversion Using Type Cast Operators 257
Operator Overloading 258

Embedded Objects 278

Nested Data Types 279

207

CONTENTS

Generic Classes Using Templates 282
Summary 286

Sty

le Tips 287

Sample Programs 289
Programming Assignments 301

APPENDIXES

A Solutions to Self-Check Questions 309

B Ba

Chapter 1 Self-Check Answers 309

Chapter 2 Self-Check Answers 314

Chapter 3 Self-Check Answers 318

Chapter 4 Self-Check Answers 321

Chapter 5 Self-Check Answers 324

Chapter 6 Self-Check Answers 326

sic Input/Output Operations in Standard C 333
The Stdio.h Header File 333

Character I/O 333

Formatted /O 334

The Syntax of Formatted Input 335

The Format Control String 335

Conversion Specifications 335

The Syntax of Formatted Output 337

String I/O 338

In-Memory Format Conversion Functions 338
The Ungetc Function 340

BIBLIOGRAPHY

INDEX

XV

309

341

343

Fundamental Concepts

1.1

1.2

PREVIEW

In this chapter you will learn:

® A Historical Overview of Programming

® The Origin of the C++ Language

* Program Structure

* The Elements of C++: Functions, Identifiers, Keywords, Literals, and Operators
* Expressions

¢ Data Types

® Variable Declaration and Scopes

¢ Standard Input-Output Operations

A HISTORICAL OVERVIEW OF PROGRAMMING

Over the past forty years programming languages have gone through an evolutionary
change. The journey started with assembly language. The first assemblers made program-
ming a relative pleasure by providing mnemonic names for operation codes (such as mul
for multiplication operations and add for addition operations) and by allowing program-
mers to refer to memory locations by symbolic names.

Advances in computer technology, including those in both hardware and software on
the one hand and experience in programming and software development on the other, led to
the appearance of high-level languages in the 1960s. The focus of programming has shifted
from compact code to structured programming using procedures and functions. Many new
programming languages have emerged in a short period of time to support this concept of
using data types, control statements, functions, procedures, and modules. Programs became

1.3

FUNDAMENTAL CONCEPTS

structured and procedural abstraction became pivotal to software design and the program-
ming paradigm. For the past twenty-five years, structured programming has worked very
well for environments in which programs tended to be relatively stable and the code did
not change significantly. Almost all of the business and scientific applications of this pe-
riod have operated under these criteria.

Recent achievements in microprocessor architecture and data communication tech-
nology have created unprecedented computing power and opportunities for the software
industry. In the last decade alone, applications for computers have increased dramatically
and literally thousands of software packages have been developed for every purpose imag-
inable. New areas for software applicability arise each week, and applications are required
to be more functional. The continuing demand for ambitious applications with many capa-
bilities have led to programs that are voluminous and complex.

The volume and complexity of applications demand a new approach to software de-
sign and engineering. The software for today’s applications must be

* Reliable

* Reusable

¢ Easy to develop
¢ Easy to maintain

Code reliability plays a critical role in software design. Reliable code is correct and
robust: Correct code does exactly what the specifications state and robust software handles
exceptional cases in a reasonable way without sudden program termination.

Ability to reuse code increases the programmer’s productivity and facilitates develop-
ment, allowing him or her to use as much as possible of the existing functionality in
writing new applications. Ease of maintenance implies that an application ought to be flex-
ible, extendable, and readable. Maintenance has always played an important role in soft-
ware development. This role in today’s applications is even more critical in light of con-
tinuing changes in hardware and software requirements. A maintainable application allows
easy modification, refinement, and improvement.

THE ORIGIN OF THE C++ LANGUAGE

C++ is a general-purpose programming language based on the C programming language.
In 1972, the language C was designed for programming under the UNIX operating
system. The language was named C because it was based on an earlier version called B.
Both B and C represent different versions designed after the earlier systems programming
language BCPL (Basic Compound Programming Language). The primary difference was
that B, the first letter of BCPL, was an essentially typeless language, while C, the second
letter of BCPL, had an extensive collection of standard types. In 1973 UNIX itself was ex-
tended, and more than 90 percent of it was rewritten from assemby language in C. The
current versions of the C language are mostly based on the ANSI Standard C. For more in-
formation, obtain a copy of a publication titled “American National Standard Information
Interchange—Programming Language C” (1990) from the American National Standards
Institutes in New York.

The C programming language has attracted considerable attention internationally be-
cause of its popularity in the software industry. The reasons for this popularity are its

1.4

Program Structure 3

power, flexibility, efficiency, compactness, and portability. However, the need for greater
modularity within programs and support for the development of large and complex sys-
tems with maximum efficiency led to the evolutionary development of C++. Developed by
Dr. Bjarne Stroustrup at the Computer Science Research Center at AT&T Bell Laborato-
ries in Murray Hill, New Jersey, and this language became available in 1985. The cryptic
name C++ implies that it is an enhanced version or superset of its predecessor C.

C++ is not a completely new language. It can be thought of more as an evolutionary
advancement of C. Both languages share the fundamental concepts for using statements,
data types, operators, function definition, and separate compilation. The primary aim in
extending C++ has been to enhance it as a suitable language for data abstraction and ob-
ject-oriented programming. Data abstraction, in contrast to procedural abstraction, is a
new approach to programming and software development. To this end, C++ has provided
a stable platform for implementing these concepts and developing high-quality tools for
complex environments. (The topics of data abstraction and object-oriented programming
will be discussed later in Chapter 6.)

Dr. Stroustrup implemented the language as a C++-to-C translator called CFRONT.
CFRONT translated the C++ code into C code so that it could be compiled and linked in
the traditional way. Today, there are CFRONT ports as well as full compilers available for
the C++ language. In contrast to CFRONT ports, full compilers such as Borland C++ gen-
erate object code directly rather than going through a conversion process.

PROGRAM STRUCTURE

A typical C++ program consists of two parts: the global part and the main function part.
The global part contains necessary declarations, definitions, and files needed by the entire
program. The main function, referred to as main(), is the most important part as the pro-
gram execution starts with this function. We begin by examining a simple program that
displays a one-line greeting on the terminal screen.

The first step is to create a file that contains the program. The file can be named some-
thing like hello.c, hello.cpp, hello.cp, or hello.cxx, depending on the conventions required
by the compiler used. For example, the Turbo C++ compiler requires filename.cpp.

// File name: hello.cpp
// This program displays a greeting to the user.

#include <iostream.h> // for input and output operations

void main () // main program part

{

cout << "Hello, Reader!";

}
A terminal session with this program looks like this:

Hello, Reader!

The first two lines comprise comment lines in C++. Comments are helpful remarks
that appear in the program listing but have no effect on the way the program runs. Their
purpose is to make programs more readable. The comment after the / symbols extends to

/7
/7
//

FUNDAMENTAL CONCEPTS

the end of the line. C++ also provides another commenting style, one in which the line
starts with /* (slash and asterisk) and ends with */ (asterisk and slash).

The third and fifth lines are blank for clarity. Line 4 includes the Stream I/O header
file which, among several other things, contains the definitions needed to allow the pro-
gram to read input and write output. A typical C++ program normally starts with this
unique feature, which is known as a preprocessor statement. It is an instruction to the
compiler to retrieve the necessary code from the Stream I/O header file into the source
code on the line requested. The cout (standard output stream) object of this file is used for
output. Header files normally have a .k extension. In some implementations, the extension
may be .App or .hxx. We will explore these entities in greater depth later in this chapter.

The sixth, seventh, and ninth lines include the usual begin and end of the main func-
tion of the program. Note that a C++ program consists of one or more functions as the
basic building blocks. The function main() is the major function that points to the place in
the program where execution starts. Moreover, each function name is followed by a pair of
parentheses to indicate that the name refers to a function and not another construct.

The body of the function—a group of statements that specify the actions to be per-
formed—is enclosed between two curly braces as shown on the seventh and ninth lines.
The purpose of the cout statement on line 8 is to print out the desired message. Notice that
this statement is indented within the braces. Proper indentation of statements is a style
matter. Although it makes no difference to the compiler for the translation of the program
from human-oriented form (source code) to machine-readable format (object code), it
helps us read the program more easily. Programming style will be discussed throughout
this book. In addition, there is a style guide summary at the end of each chapter.

Note: C++ is case sensitive. Unless otherwise specified, all keywords of the language are to be
written in lower-case letters. User-defined names can be either in lower- or upper-case letters.

We will now look at another short program to show how computations are performed
in C++. The following program takes the length and width of a field and computes the
number of meters of fence wire required to enclose the field.

File name: fence.cpp
This program computes how many meters of fence is
required for a rectangular field.

#include <iostream.h> // Allows the program to read input and

// write output.

void main () // the main function of the program

{

//
/7

// The opening brace indicates the beginning of the program.

Declaration part: shows the constants and variables used in
the program.

const int two = 2; // A constant declaration: two is of type int

int length, width, perimeter; // integer variables

