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Preface

In the last twenty years, the fundamental basis of metallurgy has become
much more firmly established. One of the most impressive developments
has undoubtedly been the theory of dislocations which accounts for many
of the characteristics of crystalline solids, in particular the behaviour
during plastic deformation. Several comprehensive books have been
written on this subject, but there seems to be a definite need for a text
which describes systematically the actual behaviour of metals and alloys
during various types of deformation, and attempts to explain this as far as
possible in terms of dislocation theory.

The approach I have adopted echoes that of the classical Kristallplasti-
zitaet by E. Schmid and W. Boas, in so far as the behaviour of single
crystals is taken as a logical starting point, but the emphasis is on the large
volume of post-war work which has been done in this field. The results of
such investigations are then used to examine more complex deformation
phenomena in polycrystalline aggregates, for example, textures, creep,
fatigue and fracture.

The book is aimed at graduate and undergraduate students of metallurgy
and materials science in Universities and Colleges of Technology who need
an overall picture of the plastic deformation of metals, in which both the
theory and behaviour of metals receive attention. It should also be useful
in explaining to engineers the basic principles which determine the
properties of the materials they use. The references included are not
comprehensive, but are selected to provide a broad basis for further reading
in the subject. An elementary working knowledge of metallography and
crystallography has been assumed.

The book was mostly written while I was at the University of Sheffield,
and I am very grateful to Professor A. G. Quarrell and colleagues in the
Department of Metallurgy there for helpful discussions and encouragement.
Mrs. Wendy Morton deserves special thanks for patiently deciphering my
manuscript and for doing much of the final typing. I owe a particular
debt to Professor E. O. Hall for reading the manuscript and for making
many helpful comments. I must also thank Dr. Brian Ralph very much
for raising numerous useful points at the proof stage and Mrs. Evelyn
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Martin for her help in the preparation of the index. The sources of all
figures have been acknowledged, and I would like to add my thanks to
the various authors who have helped me in this way.

Finally, I would like to take this opportunity of expressing my deep
gratitude to my old friend Dr. Walter Boas, who first introduced me to the
study of the deformation of crystals.

’ R. W. K. Honeycombe
Cambridge,
1968

Preface to Second Edition

In this new edition I have taken the opportunity to switch to SI units. I
have also included at the end of each chapter, additional general references
to relevant books which have been published since 1968. The text is
unchanged because I feel that the elements of the subject remain broadly
the same today. However it is inevitable that, over the fifteen years since
the book was first published, there have been many important develop-
ments in the subject, for example in the fields of creep, fatigue and fracture.
To do justice to this work a new book would have to be written, but in the
meantime I trust that this book, by emphasizing well established principles,
will provide a springboard to later developments in the field.

Finally I would like to pay tribute to the late Dr Walter Boas who died
earlier this year, and who will be remembered for his outstanding contri-
butions to our understanding of the plastic deformation of metals.

R. W. K. Honeycombe
Cambridge
1982
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Chapter 1

Introduction

Perhaps the most characteristic property of a metal is ductility or the
ability to suffer much deformation without breaking. This property was
extremely useful even to our remote ancestors when they discovered
deposits of native gold and copper as well as occasional iron meteorites.
Indeed, gold is the most ductile of metals, which for many centuries has
been beaten into the thinnest of leaf. While practical knowledge of the
forming of metals extends backwards for thousands of years, our under-
standing of the physical phenomena associated with deformation has only
developed within the last forty years. Some of the basic principles have
been elucidated, but many associated phenomena will require much further
research before they are thoroughly understood. It is the aim in this book
to provide a framework to the subject involving known facts and prin-
ciples, but occasionally the temptation to indulge in some speculation will
not be resisted.

If an increasing load is applied to a metal wire suspended from a fixed
point, extension will occur which is completely recoverable when the load
is removed. The metal is then said to be deformed elastically, and there is a
linear relationship between stress o and strain e which Hooke’s law defines
thus, E = o/e. At any given load the ratio of the stress o to the elastic
strain e is a constant E, known as Young’s modulus in the case of a uni-
axial tensile stress. However, beyond a certain load, complete recovery of
the strain does not occur on unloading because the metal has deformed
plastically or permanently. We define the transition as the yield stress or
the initial flow stress. The total elastic strain is extremely small, so the
plastic strain accounts for the overwhelming proportion of the deforma-
tion. The engineer when designing machines tries to avoid stressing a part
anywhere near the yield stress but, to form and fabricate metals, a metal-
lurgist must work in the plastic range. In this book we shall explore the
behaviour of metals from the yield stress to the point at which they break
apart; we shall examine the basic mechanisms which allow such operations
as rolling, forging, drawing and pressing to be successfully carried out.

In the early part of this century, Rosenhain and Ewing showed that



2 INTRODUCTION

plastic deformation of metals produced on the surface many parallel
microscopic steps called slip bands, which suggested to them that the
metal had shearcd along the bands ra‘hier like cards in a shuffled pack.
These early observations showed clearly that the shear occurred along
well-defined crystallographic planes in the metal, the markings changing
direction at the grain boundaries. However, detailed study was difficult in
normal metal specimens because one grain might exhibit several different
sets of markings, and the need for investigation of the behaviour of indi-
vidual grains or crystals became apparent. Only in this way could the
problem of plastic deformation be simplified.

A little later, in 1910, Andrade developed a technique of growing large
individual crystals from the melt by a method later to be elaborated by
Bridgman, who used it to prepare single crystals of many metals of uniform
dimensions, covering a wide range of possible orientations relative to the
specimen axis. The way thus lay open for the detailed study of plastic
deformation of metal crystals, with the result that the period 1920-34 was
rich in experimental investigations of crystal plasticity. Fundamental
studies of the deformation of most of the common metals led to important
generalizations, such as the critical resolved shear stress criterion, and
allowed the principles of crystal geometry to be precisely stated. Behaviour
of metals in the three main crystallographic groups, face-centred cubic,
body-centred cubic and close-packed hexagonal, was compared and con-
trasted. Results of this period of extensive activity were summarized in the
classical monograph on crystal plasticity by E. Schmid and W. Boas pub-
lished in 1936. Chapter 2 of the present book will present the classical
experimental results on the deformation of single crystals while in Chapter
4 the subject will be discussed in the light of more recent developments.
Since 1945 much new work has been done, in some cases with metals of
much higher purity which has led to the modification of earlier ideas.

In 1934 Orowan, Polanyi and Taylor independently introduced the con-
cept of a dislocation, a crystal line defect which was necessary to account
for the fact that the observed strength of metals generally was about a
thousand times less than the theoretical estimates. It is no exaggeration to
say that the dislocation has proved to be the most important discovery of
metal physics in the last thirty years. What was at first an elegant theo-
retical concept has, in the post-war years, proved to be a triumphant
reality, significant not only in the process of plastic deformation itself but
also in crystal growth, recovery and other diverse phenomena. Develop-
ment of the theory was interrupted by the war, but was resumed in 1945
to blossom in the following decade. The manifestations of the theory are
now many, but the principles can be summarized so that they are of use to
students of metallurgy. This has been the aim in Chapter 3, where simple
types of dislocation are described and some of their properties outlined;
this chapter also contains some of the direct evidence obtained for the
existence of dislocations. It is interesting to reflect that after a decade of
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fruitful theory, the well-tried metallographic approach in the guise of thin-
foil electron metallography has provided the final proof of many theo-
retical pronouncements.

Perhaps the most impressive of the plastic properties is v ork hardening
or the ability of a metal to become stronger as it deforms. Work hardening
has proved to be a very difficult problem to solve, so much so that it is
impossible to present a concise and convincing quantitative theory. How-
ever, the dislocation theory has provided many useful ideas, some of which
are considered in Chapter 5, and used in an attempt to explain the experi-
mental results.

While work hardening contributes greatly to the strength of a metal, the
addition of alloying elements is a much more effective way of increasing its
resistance to deformation. The effect of even very small concentrations of
solute atoms on the strength of a metal crystal can be very substantial, as
shown in Chapter 6. The effect of alloying elements both in solid solution
and present as a separate phase on the process of plastic deformation must
be examined in an attempt to understand the behaviour of complex alloys
(Chapter 7). While deformation by slip is widespread, it is not the only
mechanism by which plastic strain is achieved. In Chapter 8 the important
process of deformation twinning is introduced.

Many theories concerned with mechanical properties of metals are best
tested on single crystals. However, there comes a stage when an attempt
must be made to use single crystal behaviour to understand the deforma-
tion of polycrystalline aggregates. Clearly the properties of the individual
crystals provide the key, but the deduction of polycrystalline behaviour
from them is difficult and only limited progress has been made. In Chapter
9 the role of the grain boundaries is first outlined, followed by a discussion
of the stress—strain curves of polycrystalline aggregates.

Atomic holes or vacant lattice sites are an important by-product of
plastic deformation, which are often accompanied by the formation of
interstitial atoms. Such point defects are of considerable significance not
only in deformation processes, but in recovery and solid state diffusion.
They are also a direct consequence of irradiation in crystalline solids, and
are dominant factors in determining their mechanical properties (Chap-
ter 10).

It has been known for thousands of years that a metal hardened by
working can be restored to its original ductility by heating. There is a
series of interesting processes by which this end is reached, which com-
mences with the rearrangement of defects within the deformed crystals
(recovery) and concludes with the replacement of the deformed grains by
a new set of strain-free crystals (recrystallization). These phenomena are
discussed in Chapter 11. While such processes may not at first glance
appear to be relevant to a study of deformation, it should be appreciated
that if the temperature is raised, these phenomena can occur during
deformation.



