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PREFACE

Motor proteins that hydrolyze ATP to generate force for movement along cytoskeletal
fibers are now thought to have a variety of important cellular and developmental functions
in eukaryotes, such as controlling the steady-state structural organization of cytoplasm,
moving and positioning intracellular macromolecules or organelles, as well as driving
cell movement, cell division, flagellar movement, and muscular contraction.

It would be difficult to overstate the importance of the development, during the mid-
1980s, of light microscopic “motility assays” for monitoring the activity of these motor
proteins; the application of such assays has led to the identification, purification, and
characterization of many novel motor proteins, and is illuminating the precise molecular
mechanisms by which motor proteins generate force and motion.

Thus, the editors of Methods in Cell Biology recognize that a volume in this series
should contain a comprehensive sample of methods for performing microscopic motility
assays on purified myosins, dyneins, and kinesins (Chapters 1-12) and on crude cell
extracts capable of supporting organelle transport and mitotic movements (Chapters
13-20). Each chapter represents a practical guide for any researcher who may wish to
perform a particular type of motility assay. Consequently it is hoped that the volume will
prove useful for a large number of investigators of the cytoskeleton and related areas of
cell biology.

Jonathan M. Scholey
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I. Introduction

Myosin is a class of molecular motor that causes unidirectional movement of
actin filaments, using the chemical energy obtained from the hydrolysis of ATP.
In both muscle and nonmuscle cells, myosins play critical roles in various forms
of cellular movement and shape changes. Cytokinesis, directed cell migration by
chemotaxis, capping of ligand-bound cell surface receptors, developmental
changes in cell shape, and muscle contraction are only a few examples of events
in which molecular motors of the myosin class are involved. In spite of decades
of investigation, the molecular basis of the conversion of the chemical energy
into mechanical work remains an enigma. Studies with muscle fibers have been
important in defining many aspects of the contractile process; however, such
studies are complicated by problems associated with the large number of motor
molecules working simultaneously and asynchronously, as well as by the
presence of a large number of components whose functions are in many cases
unknown. In vitro motility assays provide an important approach to investigate
myosin function using only a small number of purified components. Several in
vitro motility assays have been used to quantitate velocity as a parameter of
myosin function, and recently assays have been developed that measure force
production. In the future, additional in vitro assays will need to be developed to
probe other aspects of motor function (e.g., cooperativity, efficiency).

A number of in vitro movement experiments with extracts containing actin
and myosin were reported in the 1970s, which formed the foundation for all
subsequent work in this area (for review, see Kamiya, 1986). Early reports that
purified actin and myosin can produce directional movement in vitro involved
measuring the streaming of an actin- and myosin-containing solution in glass
capillaries (Oplatka and Tirosh, 1973), movement of bundles of actin as mea-
sured by dark-field microscopy (Higashi-Fujime, 1985), and rotation of cylin-
ders or pinwheels coated with actin in a solution of myosin (Yano, 1978; Yano et
al., 1982). A quantitative assay was later developed that used the oriented polar
cables of actin filaments that are found in the giant internodal cells of the alga
Nitella axillaris. Polystyrene beads coated with purified myosin were observed



