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Defects and Geometry in Condensed Matter Physics

This book describes the key role played by thermally excited defects
such as vortices, disclinations, dislocations, vacancies and interstitials in
the physics of crystals, superfluids, superconductors, liquid crystals and
polymer arrays.

Geometrical aspects of statistical mechanics become particularly
important when thermal fluctuations entangle or crumple extended
line-like or surface-like objects in three dimensions. In the case of entan-
gled vortices above the first-order flux lattice melting transition in high-
temperature superconductors, the lines themselves are defects. A variety
of theories combined with renormalization-group ideas are used to
describe the delicate interplay among defects, statistical mechanics and
geometry characteristic of these problems in condensed matter physics.

This indispensible guide has its origins in Professor Nelson’s con-
tributions to summer schools, conference proceedings and workshops
over the past twenty years. It provides a coherent and pedagogic
graduate-level introduction to the field of defects and geometry.

DAVID NELSON is Mallinckrodt Professor of Physics and Professor of
Applied Physics at Harvard University. He received his Ph.D. in 1975
from Cornell University. His research focuses on collective effects in the
physics of condensed matter, particularly on the connections between
thermal fluctuations, geometry and statistical physics. In collaboration
with his Harvard colleague, Bertrand I. Halperin, he has proposed a
theory of dislocation- and disclination-mediated melting in two dimen-
sions. Professor Nelson’s other interests include the statistical mechan-
ics of metallic glasses, the physics of polymerized membranes, vortex
phases in high-temperature superconductors and biophysics.

Professor Nelson is a member of the National Academy of Sciences, a
member of the American Academy of Arts and Sciences and a Fellow
of the American Physical Society; he has been an A. P. Sloan Fellow, a
Guggenheim Fellow and a Junior and Senior Fellow in the Harvard
Society of Fellows. He is the recipient of a five-year MacArthur Prize
Fellowship. the National Academy of Sciences Prize for Initiatives in
Research and the Harvard Ledlie Prize.
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Preface to the book

Considerable relief accompanies completion of a project like this, espe-
cially one pursued (intermittently) for a period of eighteen years! There
are many people to thank, not the least of which are the numerous grad-
uate students. postdocs and other colleagues mentioned in Chapter |
and in the acknowledgements of the remaining chapters. However, I
owe a special debt to Michael Fisher, Leo Kadanoff and Bert Halperin,
who provided inspiring examples of how to do theoretical physics early
in my career. I am also grateful to Harvard University and the National
Science Foundation of the USA. for creating the environment and
freedom to do curiosity-driven research for the past twenty-five years.

I was fortunate to find a sympathetic publisher in Cambridge
University Press. Simon Capelin and Rufus Neal provided expert edito-
rial guidance and extraordinary patience in face of distractions caused
by. among other things, my three years as Chair of the Harvard Physics
Department. The original documents on which the last eight chapters
are based illustrate the recent history of scientific publishing. At least
one chapter evolved from an old-fashioned typewritten manuscript.
Others originally appeared via a photographic offset printing process.
The later chapters were created using LaTex and at least one is available
(in an early form) on the World Wide Web (http://arXiv.org/abs/cond-
mat/9502114). I appreciate the willingness of the original publishers to
allow me to adapt my contributions to various proceedings, summer
schools and workshops. I owe a special debt to Sally Thomas, Steven
Holt, Jo Clegg and Jayne Aldhouse for the expert way in which they
created a seamless high-quality book from these disparate media. Saul
Teukolsky, Paul Horowitz and Renate D'Archangelo kindly provided
advice and assistance with the index.

Farid Abraham generously assisted with the preparation of the illus-
tration on the front cover. For more beautiful images created by Farid
and his collaborators, see his gallery (http://www.almaden.ibm.com/vis/
membrane/gallery.html). The pictures on the back cover are double-
sided decorations of flux lines in high-temperature superconductors,
due to Zhen Yao, Charles Lieber and their associates. I am grateful to
Zhen and Charlie for permission to use their remarkable images, which
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Preface to the book

led to the first experimental measurement of a bosonic “phonon-roton™
spectrum for entangled vortex lines. For a more detailed discussion, see
the article with George Crabtree in the April 1997 issue of Physics Today
and references therein. While going over the final page proofs, | was
struck again by the many striking and experimentally observable mani-
festations of geometry, defects and statistical mechanics in condensed-
matter physics. I hope others will be able to capture some of this
excitement while reading this book.

David R. Nelson
Rhinelander, Wisconsin
September, 2001
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Chapter 1
Fluctuations, renormalization and
universality

The idea of a book on defects and geometry in condensed matter
physics slowly nucleated as I prepared contributions to various reviews,
schools and workshops during the period 1982 to 1996. Although I have
other interests in theoretical physics, I kept coming back at regular inter-
vals to the statistical mechanics of defects and to related problems in
the physics of flexible lines and surfaces. A consistent picture of these
phenomena began to emerge and it transpired that work published
in various forums during the early 1990s built on research 1 had
described. e.g.. at a summer school in the 1980s. Because considerable
time and effort went into these reviews and all areas described are still
active fields of investigation, it seemed reasonable to combine eight of
them with this new introductory chapter in book form. The result, I
hope. is a reasonably coherent account of the fascinating interplay
among defects, geometry and statistical mechanics which has played
such a central role in condensed matter physics during the past quarter
century [1].

All chapters emphasize research in which 1 had a direct role. I have
not attempted exhaustive reviews of these subjects and I apologize in
advance to those whose work 1 have overlooked or neglected. These
chapters are aimed at graduate students in physics, physical chemistry
and chemical engineering as well as at more advanced researchers.
Whenever possible. I tried to make the material intelligible to experi-
menters as well as theorists and to mention the many ingenious experi-
ments which motivate the theories.

Condensed matter theorists owe a tremendous debt to our friends
in the experimental community. They challenge us to predict and not
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merely postdict experimental phenomena. Our experimental colleagues
will go to great lengths to design an experiment capable of testing an
interesting new theoretical idea. Theorists must be careful what they say,
because predictions in condensed matter physics can often be tested in
a matter of months with relatively inexpensive table-top experiments.
We owe our colleagues in the laboratory a great debt because they keep
us honest and inspire us with their beautiful experiments.

I also owe a special personal debt to the numerous theoretical grad-
uate students, postdoctoral fellows and scientific colleagues who have
contributed to the ideas in this book. Without their enthusiasm, dedi-
cation and many crucial insights this work would not have been possible.

This book describes, among other things, the statistical mechanics
of vortices, disclinations, dislocations, vacancies and interstitials.
Excitation of these defects in crystals, superfluids, superconductors,
liquid crystals and polymer arrays usually requires strong thermal fluc-
tuations. Geometrical aspects of statistical mechanics, with or without
defects, often become particularly interesting when these fluctuations
entangle or crumple extended line-like or surface-like objects in three
dimensions. Sometimes, as is the case for entangled vortices above the
first-order flux lattice melting transition in type-II superconductors, the
lines themselves are defects! Because modern ideas about the renormal-
ization group and universality in the presence of fluctuations underpin
most of the work on defects and the statistical mechanics of lines and
surfaces in this book, the remainder of this chapter provides a brief
introduction to this point of view with several illustrative examples. We
conclude with a survey of subsequent chapters.

1.1 Fluctuations and universality in condensed
matter physics

Condensed matter physics flourished in the second half of the twenti-
eth century, due in part to the application of sophisticated tools for
understanding thermal and quantum fluctuations to an astonishing
variety of problems. The failure of uncontrolled “mean field” or decou-
pling approximations is particularly evident close to equilibrium critical
points, where fluctuations occur over multiple length scales, from an
atomic dimension of order angstrom units to a (diverging) correlation
length which can be micrometers or more. The renormalization group,
which was exported from particle physics by Kenneth Wilson in the
early 1970s, allows a systematic understanding of such nested length
scales (see Appendix A for an elementary introduction to the renormal-
ization group in the “hydrodynamic™ context considered here). A par-
ticularly striking result is that most of the detailed physics of matter at
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microscopic length scales is irrelevant for critical-point phenomena. One
can make precise quantitative predictions about certain “universal” crit-
ical exponents or scaling functions without getting the microscopic
physics right in detail. What matters is symmetry, conservation laws, the
range of interactions and the dimensionality of space. The physics of
the diverging fluctuations at a critical point on large length scales is
largely decoupled from the physics on atomic scales of order angstroms.
The idea of new universal laws of physics governing fluctuations at a
critical point was nicely summarized by A. Z. Patashinskii and V. L.
Pokrovskii [2], two pioneers of scaling ideas at critical points in the
USSR, who wrote that

When fluctuations, these shapeless amoebas, overlap in large numbers to
form a continuous, undescribable soup, new and sharply defined laws . . .

come into play, cutting through the chaos.

It turns out that not just critical points but entire phases of matter
are described by a “universal,” coarse-grained, long-wavelength theory.
This point was recognized by Wilson [3], who argued that Landau’s
hydrodynamic treatment of magnets far from critical points (carried out
in the 1930s) was itself representative of a particularly simple renormal-
ization group fixed point. One can make similar statements about the
hydrodynamic laws derived for fluids in the nineteenth century. Upon
systematically integrating out the high-frequency, short-wavelength
modes associated with atoms and molecules, one should be able to
arrive at, say, the Navier—Stokes equations. One does not have to be at
a critical point to have universal physical laws insensitive to the micro-
scopic details. We now have many concrete calculations well away from
critical points that support this point of view. Ignorance about micro-
scopic details is typically packaged into a few phenomenological param-
eters characterizing the “fixed point,” such as the density and viscosity
of an incompressible fluid like water in the case of the Navier—Stokes
equations.

The modern theory of critical phenomena has interesting implica-
tions for our understanding of what constitutes “fundamental” physics.
For many important problems, a fundamental understanding of the
physics involved does not necessarily lie in the science of the smallest
available time or length scale. The extreme insensitivity of the hydro-
dyamics of fluids to the precise physics at high frequencies and short dis-
tances is highlighted when we remember that the Navier-Stokes
equations were derived in the early nineteenth century, at a time when
even the discrete atomistic nature of matter was in doubt. The same
equations would have resulted had matter been continuous at all length
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scales. The existence of atoms and molecules is irrelevant to the pro-
found (some might even say “fundamental”) problems of understand-
ing, say, turbulence in the Navier-Stokes equations at high Reynolds
numbers [4]. We would face almost identical problems in constructing a
theory of turbulence if quantum mechanics did not exist, or if the dis-
creteness of matter first became noticeable at length scales of order
fermis instead of angstrom units.

Many aspects of condensed matter physics, by which I mean the
study of matter at everyday length and energy scales, do, of course,
depend crucially on quantum mechanics and the particulate nature of
matter. We cannot begin to understand phonons in solids. the specific
heat of metals, localization in semiconductors, the quantum Hall effect
and high-temperature superconductivity without knowing about the
quantum mechanics of protons, neutrons, electrons and. occasionally,
muons and positrons. There comes a point, however, when a more tra-
ditional reductionist approach burrows down to such short length scales
and high energies that its conclusions become largely irrelevant to the
physics of the world around us. This is why most condensed matter
physicists are not aiming to discover the “fundamental™ laws at the
smallest length scales. The reductionist school of high-energy physics
continues to be a noble intellectual enterprise. but is now virtually
decoupled from physics at angstrom-unit scales, just as atomic physics
is decoupled from the Navier—Stokes equations. New particles discov-
ered in high-energy physics are unlikely to help us understand problems
like turbulence or how itinerant magnetism arises from the Hubbard
model; neither will they unravel other hard problems like the complex-
ities of reptation dynamics in entangled polymer melts [5].

Although the precise nature of physics at very short length scales
need not have a profound impact on deep unresolved questions at much
larger scales, knowledge of the correct short-distance theory is of course
far from useless in condensed matter physics. A first-principles calcula-
tion of the viscosity and density of water, for example, would require a
molecular or atomic starting point. Deriving hydrodynamic parameters
such as the viscosity from an atomistic framework is the task of kinetic
theory, in which significant progress has been made during the last
century, at least for weakly interacting gases; and we are impressed when
ab initio band-structure experts are able to correctly predict the lattice
constant and crystal structure of silicon via numerical solutions of
Schrodinger’s equation. Nevertheless, there will always be important
problems that a strict ab initio approach based on a more fundamental
theory are unlikely to resolve.

The problems discussed in this book are all represented by coarse-
grained long-wavelength “hydrodynamic™ models, with the detailed
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physics packaged into a small number of phenomenological coupling
constants. To illustrate the approach, we discuss two interesting but
unusual situations in which ratios of long-wavelength hydrodynamic
parameters are themselves wuniversal constants, just like the universal
exponents at a critical point. The first is the universal value of the
Prandtl number of a two-dimensional incompressible fluid (it equals
(V17— 1)/2) and the second is the universal (negative!) value of
Poisson’s ratio associated with polymerized membranes or “tethered
surfaces” (it is about — 1). We then review the role of topological defects
in destabilizing the hydrodynamic surface of fixed points associated
with two-dimensional crystals. Here, the physics associated with strong
thermal disorder leads to models dominated by fluctuations in the phase
of the translational and orientational order parameters, instead of the
usual amplitude fluctuations associated with mean field or Landau the-
ories. Amplitude fluctuations now reside only in the cores of defects
such as dislocations and disclinations. We discuss the new fixed point
that takes over in membranes characterized by a bending rigidity, where
defects such as dislocations can buckle easily out of the plane. This
introduction concludes with an overview of the contents of the rest of
the book.

1.2 The universal Prandtl number in
two-dimensional hydrodynamics

Understanding chaotic fluid flows, particularly those at high Reynolds
numbers, remains one of the most challenging problems in theoretical
physics and fluid mechanics, despite the concerted efforts of many
experts during the past half century [4]. Under many circumstances,
it is expected that the fluid velocity field v(r. 7) and the concentration
yYAr. 1) of tracer particles are described by the equations

f)l\'+(V'V)V:—lV/l+llV:V, (1.1)
p

V-v=0, (1.2)

a4+ (v-V)y=DVy, (1.3)

where v is the kinematic viscosity, p is the density of the fluid, D is the
diffusivity of the tracer particles and the condition of incompressibility
(which is valid in the limit of velocities much less than the speed of
sound) is enforced by Eq. (1.2). This condition can be used to eliminate
the term involving the pressure field. p(r. 7). in Eq. (1.1). The dynamics
becomes insensitive to the density. Equations (1.1)-(1.3) then represent
a “universal” long-wavelength, low-frequency description of a large
number of atomic and molecular fluids, parameterized only by the



Fig. 1.1. The degrees of
freedom for a randomly
stirred Navier-Stokes fluid,
indexed by wavevector and
frequency, with wavevectors
above a cutoff A excluded. A
renormalization group
transformation focusing on
the long-wavelength
hydrodynamic behavior can
be constructed by iterative
elimination of Fourier modes
in a shell of wavevectors in
the range Aexp(—{)<k<A
indicated by the shaded
region.
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viscosity v and the diffusivity D. If a colored dye of tracer particles
is injected into water, one has v=10"2 cm” s ! for the viscosity and
D=10"¢cm?s™! for the molecular diffusivity and thus the dimension-
less “Prandtl number™ is

Pr=v/D=10% (1.4)

However, in general, one would expect that the Prandtl number could
assume any positive value in a three-dimensional fluid. This is not the
case in two dimensions!

By including various additive forcing terms on the right-hand side
of Egs. (1.1) and (1.3), one can simulate the effects of thermal fluctua-
tions or even random stirring which can provoke chaos and high-
Reynolds-number turbulence. The influence of the nonlinear terms
((v-V)v and (v-V)¥) on the physics at long wavelengths can be assessed
by the iterative coarse-graining procedure embodied in the renormaliza-
tion group. The idea behind this perturbative renormalization proce-
dure is reviewed in Fig. 1.1 [6, 7]. The velocity field of a d-dimensional
fluid is first decomposed into Fourier modes according to

f d’k JI dw
v(r, 1)=
k<A

@my | ag ket
The spatial modes are cut off above a spatial wavevector k= A of order
the inverse interparticle separation and the frequencies are uncon-
strained. The equations of motion for modes in the range A/e! <k < Aare
formally solved (via a diagrammatic perturbation theory) and these solu-
tions then substituted into the equations of motion for the remaining

(1.5)

—%



