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Preface

This book is devoted to the classical background and to contemporary results
on nonlinear dynamics of deterministic and stochastic systems. Considerable
attention is given to the effects of noise on various regimes of dynamic systems
with noise-induced order.

On the one hand, there exists a rich literature of excellent books on non-
linear dynamics and chaos; on the other hand, there are many marvelous
monographs and textbooks on the statistical physics of far-from-equilibrium
and stochastic processes. This book is an attempt to combine the approach of
nonlinear dynamics based on the deterministic evolution equations with the
approach of statistical physics based on stochastic or kinetic equations. One
of our main aims is to show the important role of noise in the organization
and properties of dynamic regimes of nonlinear dissipative systems.

We cover a limited region in the interesting and still expanding field of
nonlinear dynamics. Nowadays the variety of topics with regard to determin-
istic and stochastic dynamic systems is extremely large. Three main criteria
were followed in writing the book and to give a reasonable and closed presen-
tation: (i) the dynamic model should be minimal, that is, most transparent
in the physical and mathematical sense, (ii) the model should be the sim-
plest which nevertheless clearly demonstrates most important features of the
phenomenon under consideration, and (iii) most attention is paid to models
and phenomena on which the authors have gained great experience in recent
years.

The book consists of three chapters. The first chapter serves as a brief
introduction, giving the fundamental background of the theory of nonlinear
deterministic and stochastic systems and a classical theory of the synchro-
nization of periodic oscillations. All basic definitions and notions necessary
for studying the subsequent chapters without referring to special literature
are presented.

The second chapter is devoted to deterministic chaos. We discuss various
scenarios of chaos onset, including the problem of the destruction of two- and
three-frequency quasiperiodic motion. Different aspects of synchronization
and chaos control as well as the methods of reconstruction of attractors and
dynamic systems from experimental time series are also discussed.
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The third chapter is concerned with stochastic systems whose dynamics
essentially depend on the influence of noise. Several nonlinear phenomena
are discussed: stochastic resonance in dynamic systems subjected to har-
monic and complex signals and noise, stochastic synchronization and stochas-
tic ratchets, which are the noise-induced ordered and directed transport of
Brownian particles moving in bistable and periodic potentials. Special attern-
tion is given to the role of noise in excitable dynamics.

The book is directed to a large circle of possible readers in the natural
sciences. The first chapter will be helpful for undergraduate and graduate
students in physics, chemistry, biology and economics, as well as for lecturers
of these fields interested in modern problems of nonlinear dynamics. Special-
ists of nonlinear dynamics may use this part as an extended dictionary. The
second and the third chapters of the book are addressed to specialists in the
field of mathematical modeling of the complex dynamics of nonlinear systems
in the presence of noise.

We tried to write this book in such a manner that each of the three
chapters can be understood in most parts independently of the others. Par-
ticularly, each chapter has its own list of references. This choice is based on
the desire to be helpful to the reader. Undoubtedly, the lists of references are
incomplete, since there exists an enormously large number of publications
which are devoted to the topics considered in this book.

This book is a result of the long-term collaboration of the Nonlinear Dy-
namics Laboratory at Saratov State University, the group of Applied Stochas-
tic Processes of Humboldt University at Berlin, and the Center for Neurody-
namics at the University of Missouri at St. Louis. We want to express our deep
gratitude to W. Ebeling, Yu.L. Klimontovich and F. Moss for their support,
scientific exchange and constant interest. We acknowledge fruitful discussions
with C. van den Broeck, P. Hanggi, J. Kurths, A. Longtin, A. Pikovski and
Yu.M. Romanovski. The book has benefited a lot from our coauthors of the
original literature. We wish to thank A. Balanov, R. Bartussek, V. Bucholtz,
I. Diksthein, J.A. Freund, J. Garcia-Ojalvo, M. Hasler, N. Janson, T. Kap-
itaniak, I. Khovanov, M. Kostur, P.S. Landa, B. Lindner, P. McClintock,
E. Mosekilde, A. Pavlov, T. Péschel, D. Postnov, P. Reimann, R. Rozenfeld,
P. Ruszczynsky, A. Shabunin, B. Shulgin, U. Siewert, A. Silchenko, O. Sos-
novtseva, A. Zaikin and C. Ziilicke for regular and fruitful discussions, criti-
cism and valuable remarks which give us deeper insight into the problems we
study.

We acknowledge the Series Editor H. Haken for fruitful comments on the
manuscript. We thank P. Talkner, F. Marchesoni, M. Santos and coworkers
and students from the group of Humboldt-University at Berlin for helpful
remarks and comments during proofreading.

We are especially grateful to Ms. Galina Strelkova for her great work in
preparing the manuscript and for translating several parts of this book into
English, and to A. Klimshin for technical assistance.
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1. Tutorial

1.1 Dynamical Systems

1.1.1 Introduction

The knowledge of nonlinear dynamics is based on the notion of a dynamical
system (DS). A DS may be thought of as an object of any nature, whose state
evolves in time according to some dynamical law, i.e., as a result of the action
of a deterministic evolution operator. Thus, the notion of DS is the result of
a certain amount of idealization when random factors inevitably present in
any real system are neglected.

The theory of DS is a wide and independent field of scientific research. The
present, section addresses only those parts, which are used in the subsequent
chapters of this book. The main attention is paid to a linear analysis of the
stability of solutions of ordinary differential equations. We also describe local
and nonlocal bifurcations of typical limit sets and present a classification of
attractors of DS.

The structure of chaotic attractors defines the properties of regimes of de-
terministic chaos in DS. It is known that the classical knowledge of dynamical
chaos is based on the properties of robust hyperbolic (strange) attractors. Be-
sides hyperbolic attractors, we also consider in more detail the peculiarities
of nonhyperbolic attractors (quasiattractors). This sort of chaotic attractor
reflects to a great extent the properties of deterministic chaos in real systems
and serves as the mathematical image of experimentally observed chaos.

1.1.2 The Dynamical System and Its Mathematical Model

A DS has an associated mathematical model. The latter is considered to be
defined if the system state as a set of some quantities or functions is deter-
mined and an ewvolution operator is specified which gives a correspondence
between the initial state of the system and a unique state at each subsequent
time moment. The evolution operator may be represented, for example, as a
set of differential, integral and integro-differential equations, of discrete maps,
or in the form of matrices, graphs, etc. The form of the mathematical model
of the DS under study depends on which method of description is chosen.
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Depending on the approximation degree and on the problem to be studied,
the same real system can be associated with principally different mathemat-
ical models, e.g., a pendulum with and without friction. Moreover, from a
qualitative viewpoint, we can often introduce into consideration a DS, e.g.,
the cardio-vascular system of a living organism, but it is not always possible
to define its mathematical model.

DS are classified based on the form of state definition, on the properties
and the method of description of the evolution operator. The set of some
quantities z;, 7 = 1,2,..., N, or functions z;(r), r € RM determines the
state of a system. Here, z; are referred to as dynamical variables, which
are directly related to the quantitative characteristics observed and mea-
sured in real systems (current, voltage, velocity, temperature, concentration,
population size, etc.). The set of all possible states of the system is called
its phase space. If z; are variables and not functions and their number N
is finite, the system phase space RM has a finite dimension. Systems with
finite-dimensional phase space are referred to as those with lumped parame-
ters, because their parameters are not functions of spatial coordinates. Such
systems are described by ordinary differential equations or return maps.

However, there is a wide class of systems with infinite-dimensional phase
space. If the dynamical variables z; of a system are functions of some vari-
ables ¢, k = 1,2,..., M, the system phase space is infinite-dimensional. As
a rule, vy represent spatial coordinates, and thus the system parameters de-
pend on a point in space. Such systems are called distributed parameter or
simply distributed systems. They are often represented by partial differential
equations or integral equations. One more example of systems with infinite-
dimensional phase space is a system whose evolution operator includes a time
delay, Ty4. In this case the system state is also defined by the set of functions
z;(t), t € [0, Ty

Several classes of DS can be distinguished depending on the properties of
the evolution operator. If the evolution operator obeys the property of su-
perposition, i.e., it is linear and the corresponding system is linear; otherwise
the system is nonlinear. If the system state and the evolution operator are
specified for any time moment, we deal with a time-continuous system. If the
system state is defined only at separate (discrete) time moments, we have
a system with discrete time (map or cascade). For cascades, the evolution
operator is usually defined by the first return function, or return map. If the
evolution operator depends implicitly on time, the corresponding system is
autonomous, i.e., it contains no additive or multiplicative external forces de-
pending explicitly on time; otherwise we deal with a nonautonomous system.
Two kinds of DS are distinguished, namely, conservative and nonconserva-
twe. For a conservative system, the volume in phase space is conserved during
time evolves. For a nonconservative system, the volume is usually contracted.
The contraction of phase volume in mechanical systems corresponds to lost
of energy as result of dissipation. A growth of phase volume implies a supply
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of energy to the system which can be named negative dissipation. Therefore,
DS in which the energy or phase volume varies are called dissipative systems.

Among a wide class of DS, a special place is occupied by systems which
can demonstrate oscillations, i.e., processes showing full or partial repetition.
Oscillatory systems, as well as DS in general, are divided into linear and non-
linear, lumped and distributed, conservative and dissipative, and autonomous
and nonautonomous. A special class includes the so-called self-sustained sys-
tems.

Nonlinear dissipative systems in which nondecaying oscillations can ap-
pear and be sustained without any external force are called self-sustained, and
oscillations themselves in such systems are called self-sustained oscillations.
The energy lost as dissipation in a self-sustained system is compensated from
an external source. A peculiarity of self-sustained oscillations is that their
characteristics (amplitude, frequency, waveform, etc.) do not depend on the
properties of a power source and hold under variation, at least small, of initial
conditions [1].

Phase Portraits of Dynamical Systems. A method for analyzing oscil-
lations of DS by means of their graphical representation in phase space was
introduced to the theory of oscillations by L.I. Mandelstam and A.A. An-
dronov [1]. Since then, this method has become the customary tool for study-
ing various oscillatory phenomena. When oscillations of complex form, i.e.,
dynamical chaos, were discovered, this method increased in importance. The
analysis of phase portraits of complex oscillatory processes allows one to
judge the topological structure of a chaotic limit set and to make sometimes
valid guesses and assumptions which appear to be valuable when performing
further investigations [2].

Let the DS under study be described by ordinary differential equations

.’lfj ij(flll,:llg,...,.’EN), (1.1)
where j = 1,2,..., N, or in vector form
= F(x). (1.2)

« represents a vector with components z;, the index j runs over j =
1,2,...,N, and F(x) is a vector-function with components f;(x). The set
of N dynamical variables x; or the N-dimensional vector  determines the
system state which can be viewed as a point in state space R". This point
is called a representative or phase point, and the state space RY is called
the phase space of DS. The motion of a phase point corresponds to the time
evolution of a state of the system. The trajectory of a phase point, starting
from some initial point &y = x(tp) and followed as t — +oo, represents a,
phase trajectory. A similar notion of integral curves is sometimes used. These
curves are described by equations dz;/dzy = $(x1,z2,...,2N), where xi is
one of the dynamical variables. An integral curve and a phase trajectory of-
ten coincide, but the integral curve may consist of several phase trajectories
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if it passes through a singular point. The right-hand side of (1.2) defines the
velocity vector field F(x) of a phase point in the system phase space. Points
in phase space for which f;(x) =0, j =1,2,..., N, remain unchanged with
time. They are called fized points, singular points or equilibrium points of the
DS. A set of characteristic phase trajectories in the phase space represents
the phase portrait of the DS.

Besides the phase space dimension N, the number of degrees of freedom
n = N/2 is often introduced. This tradition came from mechanics, where
a system is considered as a set of mass points, each being described by a
second-order equation of motion. n generalized coordinates and n generalized
impulses are introduced so that the total number of dynamical variables
N = 2n appears to be even and the number of independent generalized
coordinates n (the number of freedom degrees) an integer. For an arbitrary
DS (1.1) the number of degrees of freedom will be, in general, a multiple of
0.5.

Consider the harmonic oscillator

F4+wiz=0. (1.3)
Its phase portrait is shown in Fig. 1.1a and represents a family of concentric

ellipses (in the case wy = 1, circles) in the plane z; = z, x5 = &, centered at
the origin of coordinates:

2,2 .2
w02.731 + 222 = H(z1,z2) = const. (1.4)

Each value of the total energy H(z1,z2) corresponds to its own ellipse. At
the origin we have the equilibrium state called a center. When dissipation is
added to the linear oscillator, phase trajectories starting from any point in the
phase plane approach equilibrium at the origin in the limit as ¢ — oo. The
phase trajectories look like spirals twisting towards the origin (Fig. 1.1b)
if dissipation is low and the solutions of the damped harmonic oscillator
correspond to decaying oscillations. In this case the equilibrium state is a
stable focus. With an increasing damping coefficient, the solutions become
aperiodic and correspond to the phase portrait shown in Fig. 1.1c with the
equilibrium called a stable node.

By using a potential function U(z), it is easy to construct qualitatively
the phase portrait for a nonlinear conservative oscillator which is governed
by

dU(z)
dz

An example of such a construction is given in Fig. 1.2. Minima of the poten-
tial function conform to the center-type equilibrium states. In a potential well
about each center, a family of closed curves is arranged which correspond to
different values of the integral of energy H(z, ). In the nearest neighborhood

z+ 0.
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N

a b c

Fig. 1.1. Phase portraits of linear oscillators: (a) without dissipation, (b) with low
dissipation, and (¢) with high dissipation

of the center these curves have an ellipse-like shape but they are deformed
when moving away from the center. Maxima of U(z) correspond to equilibria
called saddles. Such equilibrium states are unstable. Phase trajectories tend-
ing to the saddle Q (Fig. 1.2) as t — +o00 belong to singular integral curves
called separatrices of saddle Q). A pair of trajectories approaching the saddle
forwardly in time forms its stable maniflod W5, and a pair of trajectories

L U(x)

Fig. 1.2. Qualitative construction of the phase portrait of a nonlinear conservative
oscillator using the potential function U(z)



