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Preface

This book is intended as a text for a course in analysis, at the senior or
first-year graduate level.

A year-long course in real analysis is an essential part of the preparation
of any potential mathematician. For the first half of such a course, there
is substantial agreement as to what the syllabus should be. Standard topics
include: sequence and series, the topology of metric spaces, and the derivative
and the Riemannian integral for functions of a single variable. There are a
number of excellent texts for such a course, including books by Apostol [A],
Rudin [Ru], Goldberg [Go], and Royden [Ro], among others.

There is no such universal agreement as to what the syllabus of the second
half of such a course should be. Part of the problem is that there are simply
too many topics that belong in such a course for one to be able to treat them
all within the confines of a single semester, at more than a superficial level.

At M.I.T., we have dealt with the problem by offering two independent
second-term courses in analysis. One of these deals with the derivative and
the Riemannian integral for functions of several variables, followed by a treat-
ment of differential forms and a proof of Stokes’ theorem for manifolds in
euclidean space. The present book has resulted from my years of teaching
this course. The other deals with the Lebesque integral in euclidean space
and its applications to Fourier analysis.

Prequisites

As indicated, we assume the reader has completed a one-term course in
analysis that included a study of metric spaces and of functions of a single
variable. We also assume the reader has some background in linear algebra,
including vector spaces and linear transformations, matrix algebra, and de-
terminants.

The first chapter of the book is devoted to reviewing the basic results from
linear algebra and analysis that we shall need. Results that are truly basic are
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stated without proof, but proofs are provided for those that are sometimes
omitted in a first course. The student may determine from a perusal of this
chapter whether his or her background is sufficient for the rest of the book.
How much time the instructor will wish to spend on this chapter will
depend on the experience and preparation of the students. I usually assign
Sections 1 and 3 as reading material, and discuss the remainder in class.

How the book is organized

The main part of the book falls into two parts. The first, consisting of
Chapter 2 through 4, covers material that is fairly standard: derivatives, the
inverse function theorem, the Riemann integral, and the change of variables
theorem for multiple integrals. The second part of the book is a bit more
sophisticated. It introduces manifolds and differential forms in R", providing
the framework for proofs of the n-dimensional version of Stokes’ theorem and
of the Poincaré lemma.

A final chapter is devoted to a discussion of abstract manifolds; it is
intended as a transition to more advanced texts on the subject.

The dependence among the chapters of the book is expressed in the fol-
lowing diagram:

Chapter 1  The Algebra and Topology of R"
|
Chapter 2  Differentiation
Chapter 3  Integration
Chapter 4 Change of Variables
Chapter 5  Manifolds
Chapter 6 Differential Forms
\

Chapter 7  Stokes’ Theorem

Chapter 8 Closed Forms and Exact Forms

]
Chapter 9  Epilogue—Life Outside R"
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Certain sections of the books are marked with an asterisk; these sections
may be omitted without loss of continuity. Similarly, certain theorems that
may be omitted are marked with asterisks. When I use the book in our
undergraduate analysis sequence, I usually omit Chapter 8, and assign Chap-
ter 9 as reading. With graduate students, it should be possible to cover the
entire book.

At the end of each section is a set of exercises. Some are computational in
nature; students find it illuminating to know that one can compute the volume
of a five-dimensional ball, even if the practical applications are limited! Other
exercises are theoretical in nature, requiring that the student analyze carefully
the theorems and proofs of the preceding section. The more difficult exercises
are marked with asterisks, but none is unreasonably hard.
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The Algebra and Topology of R”

§1. REVIEW OF LINEAR ALGEBRA

Vector spaces

Suppose one is given a set V of objects, called vectors. And suppose
there is given an operation called vector addition, such that the sum of the
vectors x and y is a vector denoted x + y. Finally, suppose there is given an
operation called scalar multiplication, such that the product of the scalar
(i.e., real number) ¢ and the vector x is a vector denoted cx.

The set V, together with these two operations, is called a vector space
(or linear space) if the following properties hold for all vectors x, y, z and
all scalars ¢, d:

Nx+y=y+x

2)x+(y+2z)=(x+y)+z

(8) There is a unique vector 0 such that x + 0 = x for all x.
4)x+ (-1)x=0.

(5) Ix=x.

(6) c(dx) = (cd)x.

(7) (¢ + d)x = cx + dx.

(8) e(x+y) =cx+cy.
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One example of a vector space is the set R” of all n-tuples of real numbers,
with component-wise addition and multiplication by scalars. That is, if x =

(1,...,25) and y = (Y1,...,Yn), then

x+y:(:1:1+y1,...,x,,+yn),
cx = (CZ1,...,CTy).

The vector space properties are easy to check.

If V is a vector space, then a subset W of V is called a linear subspace
(or simply, a subspace) of V if for every pair x,y of elements of W and every
scalar ¢, the vectors x+y and cx belong to W. In this case, W itself satisfies
properties (1)—(8) if we use the operations that W inherits from V, so that
W is a vector space in its own right.

In the first part of this book, R™ and its subspaces are the only vector
spaces with which we shall be concerned. In later chapters we shall deal with
more general vector spaces.

Let V' be a vector space. A set aj,...,a, of vectors in V is said to
span V if to each x in V, there corresponds at least one m-tuple of scalars
C1,...,Cpyp such that

XxX=ca+- -+ Crhan.

In this case, we say that x can be written as a linear combination of the
vectors aj,...,an.

The set ay,...,a,, of vectors is said to be independent if to each x in
V there corresponds at most one m-tuple of scalars ¢y, ..., ¢, such that

XxX=ca;+ - ---+Cnhan.

Equivalently, {ay,...,a,} is independent if to the zero vector 0 there corre-
sponds only one m-tuple of scalars d,...,d,, such that

0:d131+'-'+dmam,

namely the scalars dy = dy = --- = d,, = 0.

If the set of vectors ay,...,a, both spans V and is independent, it is
said to be a basis for V.

One has the following result:

Theorem 1.1. Suppose V has a basis consisting of m vectors.
Then any set of vectors that spans V has at least m vectors, and any set
of vectors of V that is independent has at most m vectors. In particular,
any basis for V has exactly m vectors. 0O

If V has a basis consisting of m vectors, we say that m is the dimension
of V. We make the convention that the vector space consisting of the zero
vector alone has dimension zero.
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It is easy to see that R™ has dimension n. (Surprise!) The following set
of vectors is called the standard basis for R™:

er = (1,0,0,...,0),
€2'= (07170""’0)’

e, = (0,0,0,...,1).

The vector space R” has many other bases, but any basis for R” must consist
of precisely n vectors.

One can extend the definitions of spanning, independence, and basis to
allow for infinite sets of vectors; then it is possible for a vector space to have
an infinite basis. (See the exercises.) However, we shall not be concerned with
this situation.

Because R™ has a finite basis, so does every subspace of R™. This fact is
a consequence of the following theorem:

Theorem 1.2. Let V be a vector space of dimension m. If W is
a linear subspace of V (different from V), then W has dimension less
than m. Furthermore, any basis ay,...,a; for W may be extended to a
basis ay,...,ak, agt1,...,am for V. O

Inner products

If V is a vector space, an inner product on V is a function assigning,
to each pair x, y of vectors of V, a real number denoted (x,y), such that the
following properties hold for all x, y, z in V' and all scalars c:

(1) (x,y) = (¥, %)

(2) (x+ y,z) = (x,z) + (Yaz>-

(8) (ex,y) = c(x,y) = (x,cy).

(4) (x,x) > 0if x #0.
A vector space V together with an inner product on V is called an inner
product space.

A given vector space may have many different inner products. One par-

ticularly useful inner product on R™ is defined as follows: If x = (z1,...,Z5)
and y = (Y1,.--,Yn), we define

(x,y) =T1Y1+ -+ Tnln.

The properties of an inner product are easy to verify. This is the inner prod-
uct we shall commonly use in R™. It is sometimes called the dot product;
we denote it by (x,y) rather than x -y to avoid confusion with the matrix
product, which we shall define shortly.
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If V is an inner product space, one defines the length (or norm) of a
vector of V' by the equation

x|l = (x,y)*/2.

The norm function has the following properties:
(1) ||Ix|]| > 0if x # 0.
(2) llex|l = lel [Ix]l-
(3) llx+ Il < Il + Iyl
The third of these properties is the only one whose proof requires some work;

it is called the triangle inequality. (See the exercises.) An equivalent form
of this inequality, which we shall frequently find useful, is the inequality

(3) [lx =yl > [Ix]| = ll¥]l-

Any function from V' to the reals R that satisfies properties (1)-(3) just
listed is called a norm on V. The length function derived from an inner
product is one example of a norm, but there are other norms that are not
derived from inner products. On R", for example, one has not only the familiar
norm derived from the dot product, which is called the euclidean norm, but
one has also the sup norm, which is defined by the equation

lxl = max{lxlla SRR |zn|}

The sup norm is often more convenient to use than the euclidean norm. We
note that these two norms on R™ satisfy the inequalities

x| < llx|| < v/nlx].

Matrices

A matrix A is a rectangular array of numbers. The general number
appearing in the array is called an entry of A. If the array has n rows and m
columns, we say that A has size n by m, or that 4 is “an n by m matrix.”
We usually denote the entry of A appearing in the *" row and j*" column by
a;j; we call ¢ the row index and j the column index of this entry.

If A and B are matrices of size n by m, with general entries a;; and b;;,
respectively, we define A + B to be the n by m matrix whose general entry
is a;; + b;;j, and we define cA to be the n by m matrix whose general entry
is ca;j. With these operations, the set of all n by m matrices is a vector
space; the eight vector space properties are easy to verify. This fact is hardly
surprising, for an n by m matrix is very much like an nm-tuple; the only
difference is that the numbers are written in a rectangular array instead of a
linear array.
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The set of matrices has, however, an additional operation, called matrix
multiplication. If A is a matrix of size n by m, and if B is a matrix of size
m by p, then the product A - B is defined to be the matrix C of size n by
P whose general entry ¢;; is given by the equation

m
Cij = E aikbkj-
k=1

This product operation satisfies the following properties, which are straight-
forward to verify:

(1) A-(B-C)=(A-B)-C.

(2 A-(B+C)=A-B+A.-C.

3)(A+B)-C=A-C+B-C.

(4) (cA)-B=c(A-B)= A (cB).

(5) For each k, there is a k by k matrix I; such that if A is any n by m
matrix,

I, A=A and A-I,=A.

In each of these statements, we assume that the matrices involved are of
appropriate sizes, so that the indicated operations may be performed.

The matrix I} is the matrix of size k by k whose general entry 4;; is
defined as follows: é;; = 0 if ¢ # 7, and §;; = 1 if 4 = j. The matrix I} is
called the identity matrix of size k by k; it has the form

0o ... 0
0 1 0

I = 5
0 o0 1

with entries of 1 on the “main diagonal” and entries of 0 elsewhere.
We extend to matrices the sup norm defined for n-tuples. That is, if A
Is a matrix of size n by m with general entry a;j, we define

|A| = max{|a;;|;i=1,...,nand j=1,...,m}.
The three properties of a norm are immediate, as is the following useful result:
Theorem 1.3.  If A has size n by m, and B has size m by p, then

|A-B|<ml|A||B|. O

5
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Linear transformations

If V and W are vector spaces, a function T : V' — W is called a linear
transformation if it satisfies the following properties, for all x, y in V and
all scalars c:

D) Tx+y)=Tx)+T(y).

(2) T'(cx) = cT'(x).

If, in addition, T carries V onto W in a one-to-one fashion, then T is called
a linear isomorphism.

One checks readily that if 7 : V' — W is a linear transformation, and if
S : W — X is a linear transformation, then the composite SoT : V — X is
a linear transformation. Furthermore, if T : V' — W is a linear isomorphism,
then T-! : W — V is also a linear isomorphism.

A linear transformation is uniquely determined by its values on basis

elements, and these values may be specified arbitrarily. That is the substance
of the following theorem:

Theorem 1.4. Let V be a vector space with basis ay,...,a,,. Let
W be a vector space. Given any m vectors by,...,b,, in W, there is
ezactly one linear transformation T : V — W such that, for all i,
T(a,-) = b;. (] ‘

In the special case where V' and W are “tuple spaces” such as R™ and
R™, matrix notation gives us a convenient way of specifying a linear transfor-
mation, as we now show.

First we discuss row matrices and column matrices. A matrix of size 1
by 7 is called a row matrix; the set of all such matrices bears an obvious
resemblance to R”. Indeed, under the one-to-one correspondence

(T1,...,%5) — [T1 - 24]

the vector space operations also correspond. Thus this correspondence is a
linear isomorphism. Similarly, a matrix of size n by 1 is called a column
matrix; the set of all such matrices also bears an obvious resemblance to R™.
Indeed, the correspondence

T
(IEl,...,.’En) iy
Tn
is a linear isomorphism.

The second of these isomorphisms is particularly useful when studying
linear transformations. Suppose for the moment that we represent elements
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of R™ and R™ by column matrices rather than by tuples. If A is a fixed n by
m matrix, let us define a function 7' : R™ — R™ by the equation

T(x)= A x.

The properties of matrix product imply immediately that T is a linear trans-
formation.

In fact, every linear transformation of R™ to R™ has this form. The proof
is easy. Given T, let by,...,b,, be the vectors of R®such that T'(e;) = b;.
Then let A be the n by m matrix A = [by --- b,,] with successive columns
bi,...,b,,. Since the identity matrix has columns e,,...,e,,, the equation
A - I, = A implies that A -e; = bj for all j. Then A -e; = T(e;) for all j;
it follows from the preceding theorem that A - x = T'(x) for all x.

The convenience of this notation leads us to make the following conven-
tion:

Convention. Throughout, we shall represent the elements of R”
by column matrices, unless we specifically state otherwise.

Rank of a matrix

Given a matrix A of size n by m, there are several important linear spaces
associated with A. One is the space spanned by the columns of A, looked
at as column matrices (equivalently, as elements of R®). This space is called
the column space of A, and its dimension is called the column rank of A.
Because the column space of A is spanned by m vectors, its dimension can
be no larger than m; because it is a subspace of R™, its dimension can be no
larger than n.

Similarly, the space spanned by the rows of A, looked at as row matrices
(or as elements of R™) is called the row space of A, and its dimension is
called the row rank of A.

The following theorem is of fundamental importance:

Theorem 1.5.  For any matriz A, the row rank of A equals the
column rank of A. O

Once one has this theorem, one can speak merely of the rank of a matrix
A, by which one means the number that equals both the row rank of A and
the column rank of A.

The rank of a matrix A is an important number associated with A. One
cannot in general determine what this number is by inspection. However,
there is a relatively simple procedure called Gauss-Jordan reduction that
can be used for finding the rank of a matrix. (It is used for other purposes
as well.) We assume you have seen it before, so we merely review its major
features here.



