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Preface

Two volumes of Selecta contain many of Yakov Sinai’s papers spanning more than half of a century. Some of
these papers became classics a long time ago, some later, and others were published only recently.

Sinai has pioneered building bridges between the theory of dynamical systems and statistical mechanics.
Often switching his main research interests from one field to another, he has demonstrated how the ideas and
approaches in one area can enrich and bring new understanding to the other one. This Selecta clearly demon-
strates how Sinai succeeded in transforming these two areas essentially into one with a unified vision and a
wealth of tools and ideas. This singular vision can be traced in throughout these papers, including those on math-
ematical physics, fluid dynamics, and Partial Differential Equations.

Sinai is universally considered as the major architect of the modern theory of dynamical systems. Naturally, the
first volume is dedicated to ergodic theory and dynamical systems. The part on entropy theory demonstrates
the dramatic beginning of one of the most revolutionary discoveries in mathematics of the twentieth century
(which allowed to build a unified theory of probabilistic and deterministic systems). The last paper in this part was
published 40 years ago. Chaotic billiards is another flourishing area whose foundations were laid in a pioneering
work of Sinai.

The first three papers in the “Dynamical Systems” section have dramatically changed this field by bringing
together the concepts and approaches from statistical mechanics and dynamics. These ideas are at the heart of
thermodynamic formalism, which has since become the basic approach to the study of strongly chaotic
(hyperbolic) systems. Other papers in this volume include an influential paper on Feigenbaum universality
and more recent papers related to number-theoretic problems.

The selection of the papers for this edition was made by Sinai himself. He has also provided commentary for
each paper. (It was a tough selection, and in our opinion quite a few of Sinai’s classical papers were not included
here.) The reader of this Selecta will be impressed by the variety of brilliant and unconventional ideas which
revolutionized so many areas of mathematics and created so many exciting new directions. Sinai’s enthusiasm
and infinite optimism, multiplied by brilliance and consistent hard work, are responsible for that. Very often his
intuition, taste, and enthusiasm have led to a goal visible at the time only by him. Sinai created new mathematical
machineries, which were later refined and polished by others while he was busy with other discoveries.

This collection of papers of one of the giants of modern mathematics will serve as an inspiration for students,
as well as for senior researchers, demonstrating that an exciting scientific journey through the various disciplines
never ends if one is truly fascinated by mathematics. A piece of advice to the readers: Try to borrow some of
Sinai’s optimism while reading this Selecta and keep that optimism with you in your research.

Leonid A. Bunimovich

Dmitry Dolgopyat
Konstantin M. Khanin
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On the Notion of Entropy of a Dynamical
System”*

Ya. G. Sinai

81. In this paper we define the entropy of an arbitrary automorphism of a
Lebesgue space. In certain cases it can be calculated using Theorem 1 that
follows the definition. Thus we get new metric invariants of some ergodic
automorphisms of compact abelian groups.

§2. Let M be a Lebesgue space, with g-algebra S of measurable subsets and
probability measure u, and let 7" be an arbitrary automorphism of this space
(see [2]). By a finite partition A of M we mean a finite collection of pair-wise
disjoint subsets! A;,..., A, whose union is M. Then T*A is the partition
generated by {T*A;},i=1,...,n

The entropy of a finite partition A is given by the well-known formula

Zu ) log fu(Ay).

Using this formula one can find the value of the entropy of the partition A Vv

TAV...VT"A whose elements are A;y NTA;, N...NT"A;, . From general

theorems of information theory (see [4]) it follows that the limit
h(AVTAV ...V TFA)

b k+1 = hr(4)

exists for any finite partition A.

Definition. The entropy of an automorphism 7" is the supremum of hz(A)
over all finite partitions A: hy = supy hy(A).

Consider two finite partitions A = {A;,...,A,} and B = {By,..., B} and
suppose that all subsets B; belong to the closed o-algebra generated by subsets
{T™A;, 1< j <k, —o0o <n < oo}. Then we have the following theorem.

*Free translation of the Author. Original article: On the notion of Entropy of a Dynami-
cal System (in Russian), Doklady of the Soviet Academy of Sciences of USSR, 1959, v. 124,
N.4, 768-771.

1 All sets are measurable.
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YA. G. SINAI

Theorem 1. For partitions A, B as above we have hr(B) < hp(A).

Let us formulate general properties of entropy which we shall use below. Let
K, L, M be arbitrary finite partitions. Then

(1) h(K V L) = h(K) + h(L|K),

(22) A(
(26) WKV LIM) < h(K|M) + h(L|M),
(3) (KI|L) > M(K[M),

K) < h(K V L) < h(K) + h(L),

if elements of L are unions of elements of M.
Proof. From (1) and (2«)

MBVTBV...VT'B)
<h(BVTBV..VT'BVT™"AV...VT""A)
=hT"AV...VT"A)+ h(BV...VT'BIT AV ...vT*" 4). (1)

From (243) and (3)
M(BVTBV...VT'B|TT"AV...VT""A)

<SS WTBITAV...vT™A) Y WT'BIT ™AV ...vT™A)
=0 i=0
= (r+)h(BIT AV ...VT"A). @)

It is easy to show that our condition on partitions A and B implies that
for every € > 0 the conditional entropy A(B|T "AV ...V T"A) < ¢ if n is
sufficiently large. Dividing both sides of (1) by r and using (2) and the last
statement we get

h(BVTBV...VT'B) " h(AV ...V T A) 2n+r+1+€
r+1 = 2n+r+1 r

Since n depends only on £ we can let » — oo and get the result because ¢ is
arbitrary small. O

Corollary 1. If a partition A is such that the closed o-algebra generated by
all sets {T*A;}, —oo < k < 00,1 <i < nisS then hy = hp(A).

Theorem 2. If a partition A is such the closed o-algebra generated by {T* A;},
0<k<oo,1<i<n, isS then hy = 0.

The proof is based on the fact that the condition of the theorem implies that
h(AITAV...VT"A) — 0 as n — oo.



