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Preface

This book has developed from lectures held at the Free University and Technical
University of Berlin. Numerous talks with engineers have shown that there is a
need to impart knowledge on large, sparse matrices and the mathematical meth-
ods which use these matrices. In this connection it is of great importance that
it is only the combined effect of mathematical methods and digital computers
which produces the effect of the chosen algorithm. The present book has been
written with the intention to fill a gap by dicussing this relationship by means
of some methods and by supporting it with examples.

In the selection of material the emphasis was put on numerical methods
which belong to the classical, current procedures of numerical mathematics and
which have already proved their efficiency in practical use; we did not aim at
completeness of all possible procedures. The aim was rather to stress the typical
features of the described methods and to achteve ¥ better comprehension of the
questions arising in connection with sparse matrices.

A mathematical representation has been chosen which will enable natural
scientists, engineers and students of the natural sciences to find access to these
problems. Knowledge in the programming in a higher computer language and
basic knowledge in numerical mathematics are prerequisite. In particular, this
book has been written for readers who work outside universities in practical
fields and who want to get a general idea of the topic of sparse matrices.

Large parts of this book have already been published by R. Oldenbourg
Publishers, Munich-Vienna.



viii Preface

The idea to translate the German version into English has led to a revision
and an extension of the contents. The field of sparse matrix problems has
received many a fresh impetus in the last few years.

My colleague, Mr. J. Brandenburger, has contributed essentially in revising
and translating the German version of this book. He also produced the camera-
ready copy by the word processing system IATRX. The translation itself is mainly
due to Mr. W. Pourie. I.want to express to them my particular gratitude for
their good cooperatien. -

Besides, I want to express my thanks to my colleague, Mr. B. Conolly, Queen
Mary College, London, for the pains he took in critically reading and polishing
the English translation.

Finally I want to thank the Ellis Horwood Publishing Company, London, for
their good and sympathetic cooperation.

Berlin, August 1988 U. Schendel
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1 Introduction

For about 20 years the different aspects of sparse matrices have been receiving
increasing attention. Several important international conferences have taken
place on sparse matrices and their applications with a wide range of topics.

In addition, there have been a number of smaller conferences about specific
problems of sparse matrices like @ R-methods, structural analysis, power dis-
tribution systems, circuit design and others. In numerical analysis most areas,
but in particular eigenvalue problems, integral equations, linear and nonlinear
equations, linear programming, ordinary and partial differential equations have
been covered. In mathematics in a wide sense combinatorics, computing, graph
theory and statistics are dealt with, too.

All these special problems lead to a matrix A := [a;], A € IR ™*™ @ ™X",
whose number 7 of elements a;; with a;; # 0 is small in relation to the total
number n X m of all matrix elements.

Effectiveness of work with these matrices requires:

— special numerical algorithms that take account of the sparseness
— special storage techniques

~ special programming techniques.
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These requirements arise from the necessity for
— the results to be numerically acceptable

— the storage demands to be minimized because of the limited storage ca-
pacity

— computation time and computation costs to be minimized.

These criteria are of the greatest importance to the numerical analyst. In
this context the question of the existence or uniqueness of the solution is quite
often more easily answered than the fulfilment of the requirements listed above.

New computer generations allow larger problems to be solved. The VSLI-
technology ! makes it possible to build up highly efficient, economically-priced
computers for solving special problems (for example, self-adjoint elliptic partial
differential equations).

Ezamples
There is no exact definition of a sparse matrix. A (n X n) matrix A := [a;] is
said to be a sparse matriz if only a small percentage of all matrix elements a;j,
i,k =1,2,...,n, is nonzero (in practice less than 10% ).

For example, in circuit design the following structures can be found:

o

| = | L d

matrix with constant band width arbitrary sparse matrix

'VSLI: Very Large Scale Integrated
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i 7] i 7
0
0
0
0
0
band matrix with step strip matrix
Condensed forms are desirable like:
r r 9
(0 0
= o [
L | | (NI |
band matrix with margin block diagonal matrix with margin

In general it has to be noted that every numerical problem involving sparse
matrices must be treated individually; adaptive algorithms must be developed.

For example, in continuum mechanics the generalized form of the Poisson
equation on a 2-dimensional domain B

0 Jdu 0

Ju o 5
—a(a'gg)—a-y(c'gg)+k'u—f7 (z,y) e BC IR (1.1)

with a = a(z,y) > 0, ¢ = ¢(z,y) > 0 and the boundary conditions

ou
_— = 5 z, r 12
au+ o= B, (z,y) € (1.2)
has to be solved.
I's closed boundary of B
2 direction of the normal derivation

a,f3: piecewise continuous function on T.
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Let w = u(z,y) be a solution and &, f functions continuous within B. In the
method of finite elements B is partitioned into subdomains having forms such
as triangles, rectangles and others, shown in Fig.1.1.

AN

Fig. 1.1 - Examples for partitioned elements

The approximate solution @ is a polynomial defined on each subdomain of
B fulfilling certain boundary conditions. Finally triangularization of B leads to
the problem of determining the minimal solution @ of the algebraic equation

I(d) = %(ﬂTAﬂ —2a”b), (1.3)
i.e. the system
ol
—=0 & Au=0b (1.4)
ot

has to be solved. The matrix A in this example is of large order, sparse, positive
definite and symmetric.



2 Storage techniques

The effectiveness of work with sparse matrices depends not only on the under-
lying mathematics, but also on the extent to which the computer itself is an
integral part of the algorithm. Thus storage techniques play an important role;
their aim is to store information as densely and as economically as possible.

Example 2.1

In the frequency analysis of linear networks the linear systems A(w;)z = b have
to be solved for different frequencies w;. A is Hermitian of order n = 3304
with 60685 nonzero elements; hence the density (i.e. the quotient of the number
of nonzero elements and the total number of matrix elements) is 0.6 %. LU-
factorization gives 105470 nonzero elements with a fill-in of 0.4 %. Conventional
storage techniques would require about 20 million storage cells.

This example shows some of the properties which storage techniques must
possess:

— only nonzero elements should be stored

— it should be possible to insert additionally created nonzero elements casily
and quickly into the existing list of nonzero elements.

The treatment of sparse problems is affected considerably by the configu-
ration of the computer available, i.e. according to their importance within the
algorithms the data are stored either in fast-working and therefore expensive



6 2 Storage techniques

storages (for example core) or in slower peripheral storage (for example discs).
At present various storage modules are available for users in medium-sized and
larger equipment.

If an unstructured matrix is sufficiently sparse it can of course be kept
throughout in the high-speed storage of a computer: only the elements a;; # 0
are stored. The placement scheme for these elements in the store depends on the
algorithm that needs these elements. Different kinds of storage are available.
If the large matrix to be stored is of high density, or the number of nonzero
elements exceeds the capacity of the core or high-speed storage, the matrix has
to be kept in the low-speed external store and the matrix elements have to be
transported in blocks into the high-speed storage. In this context the reader is
recommended to study carefully the analysis of paging strategies for the solution
of linear systems.

2.1 Linked lists

Each element a;; # 0 in the column % is stored as an item I with

I:=(i,v,p) (2.2)
and
1 : rtow index
v : value of the element a;
p : address of the next element a;; # 0

of column k.

The address p is zero, if a;; is the last nonzero element in the column k. Then
an item can be depicted as follows:

address of the item [

}

row index v=value p=address
[} Gik of next item

Fig. 2.1 - Item

Besides this block ST of store for the items a further block is needed to store
the first address of each column:

BC : beginning of column address
Thus the total storage requirement S consists of both the part BC and part ST.

Part BC' has exactly n locations and ST requires exactly 3¢ storage locations,
where ¢ denotes the number of nonzero elements. The total length of S is: n+3t.
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| }

a.dg1 r]ess i P

——
k

column index

BC S1

Fig. 2.2 - Total list

In consequence of this storage scheme additionally created nonzero élements
can be stored in ST without having to rearrange them. To show how the creation
of a new nonzero element affects BC and ST the following ‘exampTe is given:

Example 2.3

a13 := a3z = 0, a3 := 0.5, aq3 := 1.5.

BS begins at location 101, and the items corresponding to a3 and a4z begin at
locations 200 and 203 respectively; the element ass := 2.5 is inserted later. This
item starts at 300:

Table 2.1 Example

location 101 200 | 201 | 202 (| 203 | 204 | 205 || 300 | 301 | 302

present contents | 200 2 0.5 | 203 4 1.5 0 - - -

new contents 200 2 0.5 | 300 4 1.5 0 3 2.5 | 203
from item =aga item =aq43 item =a33
BS

2.2 Storage technique in case of identical matrix elements

The values of the nonzero elements of a sparse matrix often are equal. In this
case numerical constants are used. For illustration the following example is
given:

Example 2.4
A (5,5)-sparse matrix A containing 13 nonzero elements is to be stored by

columns.
1.0 40 0 0 0

30 1.0 40 O 0
A=(0 40 10 40 O
0 0 40 1.0 3.0
0 0 0 4.0 1.0



Usual storage technique yields the following diagram:

2 Storage techniques

k=1 k=2 k=3 k=4 k=5
ifi]2] | tf2]3] Ji[efs[a] Jil[a]a]s] Jila[s] [
1.0 4.0 4.0 4.0 3.0
3.0 1.0 1.0 1.0 1.0
4.0 4.0 4.0

k column index, 1 row index

Fig. 2.3 — Usual storage technique

Since many values of the matrix A are equal a list of the different values is
constructed and to each row index is assigned an index of the list of values.

k=1 k=2 k=3 k=4 k=5
1| 112 11213 21314 31415 4|5
1[1]3 21112 21112 2112 311
l
1.0 1
4.0 2
3.0 3

Fig. 2.4 - Modified storage technique

The saving of storage cells may be practically enormous, if, as in a linear
programming example, 97000 nonzero elements assume only 4500 different val-
ues.

2.3 Unlinked lists

In general unlinked lists need even less storage cells than the techniques de-
scribed above. These storage techniques are applied to avoid the use of external
storages for the matrix elements, since the transportation from the external to
the internal storage takes a lot of time. Additionally created nonzero elements
(in various steps of the computations) are introduced by relocating.

Scheme 2.5
To each nonzero element correspond 2 storage cells containing the row index ¢
and the value a;x. Moreover there are items representing the current column k.

item 2 for
aix #0

(o [ % |

item 1 for
column

1 = 0 denotes the end of the current column

An item denotes the end of the matrix storage.



