M.MAQUSI

APPLIED




APPLIED
WALSH
ANALYSIS

MOHAMMAD MAQUSI

Electrical Engineering Department
University of Jordan
Amman, Jordan

IHEYDENI

NNNNNNNNNNNNNNNNNNNNNNNNN




Heyden & Son Ltd, Spectrum House, Hillview Gardens, London NW4 2]JQ, UK
Heyden & Son Inc., 247 South 4 1st Street, Philadelphia, PA 19104, USA
Heyden & Son GmbH, Devesburgstrasse 6, 4440 Rheine, West Germany -

British Library Cataloguing in Publication Data

Maqusi, Mohammad
Applied Walsh analysis.
1. Engineering mathematics 2. Walsh functions

I. Title
620'.001'51555 TA347.W/ 80-49885

ISBN 0-85501-162-9

© Heyden & Son Ltd, 1981
All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, with-

out the prior permission of Heyden & Son Ltd.

Printed in Great Britain by Maclehose and Co. Ltd, Renfrew and London



To Hiyam, Suhair, and Samar



PREFACE

The material in this book is intended to provide concise and clear treatment of a general
working theory of Walsh analysis and some of its applications. In this respect, emphasis
is placed on generalized ‘continuous’ Walsh functions. However, due to the significance
of the discrete aspect of Walsh analysis, certain considerations in this latter aspect are also
developed throughout the various chapters.

The book is arranged so that it takes the reader from somewhat basic topics on theory
and applications to further topics of intermediate and advanced levels. Hence, the material
attempts to produce some main techniques in applied Walsh analysis, and advance from
somewhat simpler to more sophisticated methods and problems.

The first three chapters provide an introductory working theory of Walsh functions and
transforms. Chapter 1 presents some historical remarks on Walsh and Walsh-related ortho-
gonal functions, and reviews the mission of this work. Chapters 2 and 3 are concerned with
the introduction of Walsh functions and the Walsh transform. These two chapters establish
basic principles in the theory of Walsh analysis.

Chapter 4 introduces some concepts which are fundamental to statistical studies of ran-
dom processes by Walsh function techniques. Concepts such as dyadic and stayadic correla-
tion, sequency power spectral representation, and a sampling theory are formulated to suit
Walsh function analysis.

Chapter 5 deals with a special class of linear systems, called dyadic invariant. The charac-
terization of such systems is made in both time and sequency domains. Furthermore, certain
statistical concepts developed in Chapter 4 are utilized in the statistical description of such
systems.

Chapter 6, on the other hand, turns to the study of nonlinear systems. Walsh functions
are employed in the derivation of useful approximate output expressions for such systems.
In another aspect of study, the processing of random signals by nonlinear systems is investi-
gated with the aim of producing convenient expressions for the computation of certain out-
put quantities, such as dyadic and stayadic correlation functions. In addition, some system
identification procedures are developed through the use of Walsh input test signals.

Chapter 7 deals with some statistical studies in the applications of Walsh functions. In
particular, Walsh series expansions are used for the representation of suitable probability
distributions. This in turn facilitates the computations of general moments of nonlinear
transformations (systems).

xi
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Chapter 8 is not on Walsh functions, but it does introduce a related set of functions
which exhibit similar characteristics to Walsh functions. This chapter deals with Haar func-
tions which have often been linked to Walsh functions in their studies and applications.

In Chapter 9 some relations are derived between Walsh and Fourier series and transforms.
These relations establish channels of spectral conversion between the sequency and fre-
quency domains. In addition, some conversion relations between the Z-transform and the
discrete Walsh transform are also developed.

Chapter 10 deals with certain applications of Walsh analysis in communications. A scheme
of sequency-division multiplexing based on Walsh carriers is discussed in comparison with
conventional time- and frequency-division multiplexing methods. The data coding problem
demonstrates the possible use of Walsh coefficients for signal transmission. And image
transmission based on Walsh functions demonstrates certain advantages, such as simplicity
of representation and bandwidth compression. The general Walsh signal processing prob-
lem is illustrated via considerations in electrocardiograph and speech signal analyses. These
latter problems further demonstrate certain advantages which may be gained by employing
Walsh transforms in the digital processing of signals.

The appendices contain results which are considered to be supplementary to certain
developments contained in the respective chapters. In addition, they provide useful concise
references on discussed material.

A large number of selected references appears at the end of each chapter. In addition, a
separate list of other selected references provides a supplement to the chapter references.
The interested reader should find these references helpful in further study and research on
Walsh functions and their applications.

In general, the book is intended to provide a useful reference work especially for the
diligent and newly-initiated student of Walsh theory. It is further hoped that it will help
interested engineers and applied scientists to gain a good appreciation of Walsh analysis
techniques and their applications.

The author wishes to thank L. C. Ludeman of New Mexico State University for his help
in checking part of this work, and the proofreading. My deep thanks go to my wife Hiyam
and my daughters Suhair and Samar for their endurance during the preparation of this work.

June 1980 M. Maqusi



ABBREVIATIONS AND SYMBOLS

BDF Bandpeass filter

DFT Discrete Fourier transform

DWT Discrete Walsh transform

ECG Electrocardiogram

FDM Frequency-division multiplexing
FFT Fast Fourier transform

FHT Fast Hadamard transform

FWT Fast Walsh transform

GSBPF Generalized sequency bandpass filter
GSBSF Generalized sequency bandstop filter
GSHPF Generalized sequency highpass filter
GSLPF Generalized sequency lowpass filter
HT Hadamard transform

KLT Karhunen-Loéve transform

LDI Linear dyadic invariant

LPF Lowpass filter

LTI Linear time invariant

PAM Pulse amplitude modulation

PCM Pulse code modulation

PDF Probability density function

SBPF Sequency bandpass filter

SDM Sequency-division multiplexing
SLPF Sequency lowpass filter

TDM Time-division multiplexing

WCF Walsh characteristic function

WDS Weakly dyadic stationary

WSS Weakly (wide) sense stationary
Cx(1) Stayadic correlation function

Dy(1) Dayadic correlation function

Dp(x) Walsh-Dirichlet kernel
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ABBREVIATIONS AND SYMBOLS

Delta function, or impulse
Kronecker delta

Probability density function
Probability distribution function
Hadamard matrix

Haar matrix

Sequency transfer function

Fine integral

Ordinary correlation function
Walsh-characteristic function
Walsh matrix

Walsh function (sequency-ordered)
Walsh-Fine function
Rademacher function

Haar function

Sequency power spectral density

Dyadic addition operator
Dyadic convolution operator
Dyadic derivative operator
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CHAPTER 1 -+ INTRODUCTION

1. General Remarks

Ever since the French mathematician Joseph B. Fourier offered a
solution to a heat conduction problem by a trigonometric series
representation [1], Fourier theory has been of major importance in
applications to science and engineering problems. In particular,
Fourier analysis is well established in the engineering sciences as
a means for analog wave analysis where the sine-cosine system of func-
tions finds ample opportunities for use. However, with the advent of
digital computers and the introduction of their use in various fields,
the theory of discrete (trigonometric) Fourier analysis had to be
developed further. 1In this respect, it is found that other theories
can offer equal and sometimes better means of analysis. One such theory
is based on a set of functions due to Walsh [2].

Theorists of Walsh functions, especially in the last two decades or
so, have been attempting to extend Walsh analysis in a parallel manner
to the long-established Fourier analysis. Such attempts have actually
resulted in the formulation of basic notions and concepts of Walsh
theory. Meanwhile, other efforts have been concentrated on the applica-
tions side of Walsh analysis. In this latter region, much progress has
also been achieved. However, a next stage of development will most
probably be directed towards the applications of Walsh theory, as an
independent entity, for the analysis of suitable signals and systems.

In particular, harmonic analysis has been used fruitfully in many
aspects of communication theory, especially in the study of time series
analysis [3]. Due to the popularity and mathematical tractability of
Fourier theory, trigonometric functions have obviously surpassed other
sets of complete orthonormal functions. The frequency spectral
representation of stationary stochastic processes has been both promi-
nent and useful in studies of such processes [4]. Admittedly, Fourier
analysis is well suited for considerations of stationary random pro-
cesses and linear time invariant systems. However, for a new type of
processes called dyadic stationary processes, Walsh analysis is more
suitable. On the systems side, sequency spectral representation plays

1



2 APPLIED WALSH ANALYSIS

just as an important role in the analysis of linear dyadic invariant
systems as do methods of (frequency) spectral analysis for linear time
invariant systems. Specifically, for digital-type signals, Walsh func-
tion expansions may be applied in facilitating many aspects of computa-
tions associated with such signals [5].

2. Orthogonal Functions: Historical Remarks

At the turn of the twentieth century, scientists and engineers were
well aware of the existence and use of many orthogonal sets of functions
and polynomials [6]. Such sets include trigonometric functions, Bessel
functions, Hermite polynomials, Legendre polynomials and a host of
others. But as remarked earlier, trigonometric functions which are
inherently encountered in Fourier analysis have played a dominant role
in applications to engineering and science problems.

The selection and use of any orthogonal set of functions still hinges
primarily on the type of problem under study and the consequent amenabil-
ity of the problem to the specified set. For instance, while some sets
render rather simple and useful solutions to a certain problem, other
sets give complicated and less useful forms of solution. For example,
the discrete Karhunen-Loéve (KL) expansion technique offers an efficient
representation for discrete time random process. But the technique is
usually very difficult to manipulate and implement. On the other hand,
for such a process, Walsh function analysis may prove more advantageous
from such points of view as manipulation and implementation.

By the start of the twentieth century, some mathematicians sought the
construction of orthogonal sets of functions which differ markedly from
the already existing sets in the sense of continuity and valuedness over
their domain of definition. Functions which are binary-valued, and dis-
continuous at zero-crossing points have been constructed. Included in
this list are functions due to Haar, in 1910 [7]; Rademacher, 1922 [8];
and Walsh, 1923 [2]. Haar and Walsh functions are complete orthogonal
sets, while the set of Rademacher functions is only orthogonal. It is
easily shown that Rademacher functions form a subset of Walsh functions;
yet, the two sets were constructed independently.

Of these binary functions, the set due to Walsh is more prominent in
terms of recent studies and applications. Originally, Walsh defined his
set on a half-open unit interval [0,1). However, representations of
these functions have been given on the interval [-1/2,1/2). At a later
stage, Paley [9] reintroduced Walsh functions to the scientific com-
munity by defining them as products of Rademacher functions. Walsh's
definition seems more appealing to engineers because of the analogy with
trigonometric functions in terms of ordering the functions according to
the increasing average number of zero-crossings in a unit interval,
called sequency. Paley's definition, on the other hand, seems attractive
for analytical manipulations.

In 1949, Fine [10] published an excellent paper dealing with some
mathematical properties of Walsh functions as defined earlier by Paley.
In a following paper published in 1950 [11], Fine introduced the Walsh
transform for representing nonperiodic functions. Further studies of
generalized Walsh functions and transform were made later by Chrestenson
[12], Selfridge [13] and others. Since then, many investigators have
carried the work further, but mainly in the region of applications of
Walsh theory.
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3. Applications of Walsh Functions

Well-formulated applications of Walsh functions did not appear in the
literature until the early 1960's with the appearance of the works by
Corrington [14] and Weiser [15] who actually initiated the idea of
employing Walsh functions in the studies of nonlinear problems.

Over the last few years, Walsh functions have been successfully
applied to engineering, physics and other physical science problems.
Their use in signal processing (audio and video) has been noticeably
useful and decidedly advantageous in certain respects [5], [16]. Their
use is by no means limited to these fields. Indeed, they have also been
successfully applied in the medical area for purposes of ECG (electro-
cardiograms) and EEG (electroencephalograms) analysis, in the geological
area for analysis of seismic data, and in the biological sciences for
classification of biological forms.

With the realization of the equivalence of the discrete Walsh trans-
form and the Hadamard transform, the use of Walsh functions has been
even more favorable due to the ease of generating Hadamard matrices on
digital computers. The discrete Walsh transform constitutes the basis
for much of current investigations into the applications of Walsh func-
tions. This is largely attributed to the ease and speed with which a
fast Walsh transform (FWT) may be executed.

The most important factor in the increased use of Walsh functions is
perhaps due to their digital nature. Another important factor is again
due to the existence of simple software and hardware implementations of
fast Walsh transform methods for the computations of digital or discrete
time data.

As the Walsh transform matrix is purely real, with entries {+1, -1,},
fast operations require fewer operations than the comparable fast Fourier
transform (FFT). This in turn implies savings in processing time and
storage allocations when using a digital computer as the signal proces-
sor. This advantage is particularly important to researchers with
limited facilities, a condition which is not uncommon to colleges and
small-scale industries.

4. This Work

Admittedly, most applications of Walsh functions are in the area of
digital signal processing; and thus the discrete aspect of Walsh theory
has been dominant over the generalized case. However, the use of
generalized Walsh functions and Walsh transform in signal analysis can
also be utilized beneficially in a good number of applications.

This work is devoted primarily to studies in generalized Walsh theory
and some of its significant applications in sequency spectral analysis
of signals and systems. Our objective is the treatment of the Walsh
theory in a unified presentation: concise and clear. The collection of
research results in the covered areas should provide easy reference to
concerned workers in the field. The applications, on the other hand,
may motivate further investigations into uses of Walsh techniques,
especially in the nonlinear area.

To these ends, it is hoped that this work will contribute to better
understanding of Walsh theory and its applications, particularly in the
analysis of stochastic problems [15], [17].
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CHAPTER 2 - WALSH FUNCTIONS

1. Introduction

This chapter is primarily concerned with definitions of Walsh
functions and presentation of their properties. Two standard methods
of defining these functions are dealt with. The first method relies
on a recursive-type relation and establishes Walsh functions in a form
convenient for computational purposes. The second method defines Walsh
functions as products of Rademacher functions. This latter approach
generates a set which is useful for analytical considerations.

The concept of dyadic (or binary) representation of real numbers
constitutes a significant aspect in the definition of Walsh functions
and the derivation of their properties. Hence, a review of dyadic
representation of real number appropriately precedes definitions of
Walsh functions.

Upon defining Walsh functions as a complete orthogonal set, it be-
comes possible to employ these functions in Walsh series expansion
representations for suitable functions. In this connection, we addi-
tionally discuss a useful method which sometimes facilitates the
computations of Walsh expansion coefficients.

The development of a Walsh-Dirichlet kernel and associated properties
forms another part of the chapter. 1In conclusion, the chapter presents
a discussion on harmonic ordering of Walsh functions. This type of order-
ing divides the Walsh set into disjoint subsets. Members of these sub-
sets are characterized as harmonically-related Walsh functions.

2. Dyadic Representation of Real Numbers

In this section we discuss dyadic representations of real numbers
and the rules of dyadic addition [1].



