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Lecture 1

—

Quantum Probability

In the Mathematical Congress held at Berlin, Peter Shor presented a
new algorithm for factoring numbers on a quantum computer. In this
series of lectures, we shall study the areas of quantum computation (in-
cluding Shor’s algorithm), quantum error correcting codes and quantum
information theory.

1.1 Classical Versus Quantum Probabiiity
Theory

We begin by comparing classical probability and quantum probabil-
ity. In classical probability theory (since Kolmogorov’s 1933 mono-
graph [11]), we have a sample space, a set of events, a set of random"
variables, and distributions. In quantum probability (as formulated in
von Neumann'’s 1932 book [14]), we have a state space (which is a Hilbert
space) instead of a sample space; events, random variables and distribu-
tions are then represented as operators on this space. We now recall the
definitions of these notions in classical probability and formally define
the analogous concepts in quantum probability. In our discussion we
will be concerned only with finite classical probability spaces, and their
quantum analogues—finite dimensional Hilbert spaces.
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[ Spaces l
1.1 The sample space | 1.2 The state space H: It
: This is a finite set, say | is a complex Hilbert space of di-
§1.2,..iu} mension 7.

] Events

1.3 The set of events Fg:
This is the set of all subsets of 2.
Fq is a Boolean algebra with the
union (U) operation for ‘or’ and
the intersection (N) operation for
‘and’. In particular, we have

Eﬂ(FlLJFz) (EﬂFl)U(EﬂFg)

1.4 The set of events P(H):
This is the set of all orthogo-
nal projections in H. An ele-
ment E € P(H) is called an
event. Here, instead of ‘U’ we
have the max (V) operation, and
instead of ‘Y’ the min (A) oper-
ation. Note, however, that E A
(Fy V F3) is not always equal to
(EAF)V (EAF;). (They are

| equal if E, Fy, F; commute with

each other).

Random variables

and observables

1.5 The set of random vari-
ables Bg: This is the set of
all complex valued functions on
Q. The elements of Bgn are
called random variables. Bgq is an
Abelian C*-algebra under the op-
erations

(af)w) = af(w);
(f+9)w) = flw)+gw);
(f Pw) = flw)gw);

ffweEfw = f@)

Here, a € C, f,g € Bq, and the
‘bar’ stands for complex conjuga-
tion. The random variable 1 (de-
fined by 1(w) = 1), is the unit in
this algebra.

1.6 The set of observ-
ables B(H): This is the
(non-Abelian) C*-algebra of all
operators on H, with ‘+’ and ‘~’
defined as usual, and X* defined
to be the adjoint of X. We
will use X1 instead of X*. The
identity projection I is the unit
in this algebra.

We say that an observable is real-
valued if Xt = X, that is, if X is
Hermitian. For such an observ-
able, we define Sp(X) to be the
set of eigen values of X. Since
X is Hermitian, Sp(X) C R, and
by the spectral theorem, we can
write X as

X = Z A\E),

AESp(X)




1.1. Classical Versus Quantum Probability Theory

With each event E € Fq we asso-
ciate the indicator random vari-
able 1g defined by

T5(w) = {(1)

ifwe E;
otherwise.

For a random variable f, let

Sp(f) £ f(Q). Then, f can
be written as the following linear
combination of indicator random
variables:

f= > Mgy,

A€Sp(f)

so that

1i-1ay - -1y =0 for A#NX;

> gy =1
A€Sp(f)

Similarly, we have

=Y Nlggqp,
AESp(f)

and, in general, for a function
¢ : C — C, we have the random
variable -

o(f)= Y M1y

A€Sp(f)

Later, we will be mainly inter-
ested in real-valued random vari-
ables, that is random variables f
with Sp(f) C R (or ff = f).

where FE), is the projection on the
subspace {u : Xu = A} and

E\Ey\ =0, ), /\IG Sp(X), /\76/\';

S EBr=1I.

A€Sp(X)
Similarly, we have B
XKoo o az KB
A€eSp(X)

and in general, for a function ¢ :
R — R, we have

o(X)= Y @(NE.

A€SP(X)
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Distributions and states

1.7 A distribution p: This
is a function from Fq to R,
determined by m real numbers
P1,D2, - - - , Pn, satisfying:

» 26
n
2.p = 1L
=1

The probability of the event E €
Fa (under the distribution p) is

i
Pr(E;p) S ) pi.
i€k

When there is no confusion we
write Pr(E) instead of Pr(E;p).
We will identify p with the
sequence (p1,p2,...,Pn). The
probability that a random vari-
able f takes the value A € R is

Pr(f = A) £ Pr(f~1({\});

thus, a real-valued random vari-

able f has a distribution on the

real line with mass Pr(f~({\}))
AER

1.8 A state p: In quantum
probability, we have a state p in-
stead of the distribution p. A
state is a non-negative definite
operator on H with Trp = 1.
The probability of the event E €
P(H) in the state p is defined
to be Tr pE, and the probability
that the real-valued observable X
takes the value A is

Tr pE) if A€ Sp(X);
0 otherwise.

Pr(X:A):{

Thus, a real-valued observable X

“has a distribution on the real line

with mass Tr pFE) at A € R.

Expectation, moments, variance

The expectation of a random
variable f is

Ef2 Y fwpe
L wed

The r-th moment of f is the ex-
pectation of f”, that is

The expectation of an observable
X in the state p is

EX 2 TrpX.
P

The map X — E, X has the fol-
lowing properties:




Tl

K p=

1.1. Classical Versus Quantum Probability Theory

Il

Ef > (Fw) pu

weN

=3 X P,

A€Sp(f)

and the characteristic function
of f is the expectation of the
complex-valued random variable
et/ that is,

Ee‘itf = Z eit/\ Pr(f_l()\))

R A€Sp(f)

The variance of a real-valued ran-
dom variable f is

var(f) SE(f —Ef)? > 0.
P P
Note that
var(f) =E f* — (E f)%
P P
also, var(f) = 0 if and only if all

the mass in the distribution of f
is concentrated at Ep f.

var(X)

(1) It is linear;

(2) E,X'X >0, for all X €
B(H).

(3) Epl=1.
The r-th moment of X is >the ex-
pectation of X"; if X is real-

valued, then using the spectral
decomposition, we can write

> X'TrpEj.
AESp(X)

EX" =
p

The characteristic function of
the real-valued observable X is
the expectation of the observable
eX, The variance of a (real-
valued) observable X is

Tr p(X — Tr pX)?
Tr pX? — (Tr pX)?
0.

v

The variance of X vanishes if and
only if the distribution of X is
concentrated at the point Tr pX.
This is equivalent to the property
that the operator range of p is
contained in the eigensubspace of
X with eigenvalue Tr pX.

I

Extreme points

1.9 The set of distribu-
tions: The set of all probabil-
ity distributions on (2 is a com-
pact convex set (Choquet sim-
plex) with exactly n extreme
points, §; (j = 1,2,...,n), where
§; is determined by

1.10 The set of states: The
set of all states in H is a convex
set. Let p be a state. Since p
is non-negative definite, its eigen
values are non-negative reals, and
we can write
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' Al fw=g;
W3S { 0 otherwise.

If P = §;, then every random
variable has a degenerate distri-
bution under P: the distribution
of the random variable f is con-
centrated on the point f(j).

p= Z AEy;

AeSp(p)

since Tr p = 1, we have

> Axdim(Ey) =1.
AeSp(p)

The projection E) can, in turn,
be written as a sum of one-
dimensional projections:

dim(Ey)
EA = Z E,\,i.
i=1

" Then,
dim(E))
=5 3 Ay
A€Sp(p) =1

Proposition 1.1.1 A one-dim-
ensional projection cannot be
written as a non-trivial convex
combination of states.

Thus, the extreme points of the
convex set of states are precisely
the one-dimensional projections.
Let p be the extreme state corre-
sponding to the one-dimensional
projection on the ray Cu (where
||lu|]| = 1). Then, the expectation
m of the observable X is

m=Truu! X =Tru! Xu=(u, Xu),
and

var(X) = Truul(X —m)?
= Tr||(X — m)u|®.




1.2. Three Distinguishing Features

Thus, var(X) = 0 if and only if u
is an eigenvector of X. So, even
for this extreme state, not all ob-
servables have degenerate distri-
butions: degeneracy of the state
does not kill the uncertainty of
the observables!

The pr

oduct

| 1.11 Product

spaces: If
there are two statistical systems
described by classical probability
spaces ({21,p;) and (Q2,p,)
respectively, then the proba-
bility space (21 x Q2,p; X Ps)
determined by

Pr({(i,5)};p1 X pa) &
Pr({i}; p,) Pr({j}; p2),

systems as a single system.

describes the two independent |

1.12 Product spaces: If
('Hl,pl) and (Hz,pz) are two
quantum systems, then the
quantum system with state
space H; ® Ha and state p; ® po
(which is a non-negative defi-
nite operator of unit - trace on
Hi, ® Hy) describes the two
independent quantum systems
as a single system.

Dynamics

1.13 Reversible dynam-
ics in Q: This is determined
by a bijective transformation
T:Q — Q. Then,

f ~ foT (for random variables)
P ~ Po T (for distributions)

1.14 Reversible . dynamics
in H: This is determined by
a unitary operator U : H — H.
Then, we have the dynamics of

Heisenberg: X ~ Ut XU for X €
B(H);

Schrodinger p ~» UpU' for the
state p.

1.2 Three Distinguishing Features

We now state the first distinguishing feature.

Proposition 1.2.1 Let E and F be projections in H such that EF # FE.

Then, EV F < E + F is false.
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Proof Suppose EVF < E+F. Then, EVF —FE < F. So,
F(EVF-E)=(EVF-E)F.

That is, FE = EF, a contradiction.
]

Corollary 1.2.2 Suppose E and F' are projections such that EF # FE.
Then, for some state p, the inequality Tr p(E V F) < Tr pE + Tr pF is
false.

Proof By the above proposition, EV F' < E + F is false; that is, there
exists a unit vector u such that

(u;(EV F)u) £ (u,Eu)+ (u,Fu).
Choose p to be the one dimensional projection on the ray Cu. Then,

TH(EV F)p = (u, (EV F)u),
Tr Ep = (u, Eu),
Tr Fp = (u, Fu) .

The second distinguishing feature is:

Proposition 1.2.3 (Heisenberg’s inequality) Let X and Y be ob-
servables and let p be a state in H. Assume TrpX = TrpY = 0. Then,

var(X) var(v) > (m%{x,Y})2+ (m%ux,}’l)z

> 1(Tepi [X,¥]2,
where

{X,Y}2 XY +YX; and
[X,Y] 2 XY -YX.
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Proof For z € C, we have

Tr p(X 4+ 2Y)1(X + 2Y) > 0.

Ifz=ref =~

r2Tr pY? 4+ 2rRe P Tr pY X + Tr pX?%>0.

The left hand side is a degree-two polynomial in the variable r. Since,
it is always non-negative, it can have at most one root. Thus; for all 6,
(Tr pX?)(Tr pY?) > (Re™* Tr pY X)?
2
> (cose’l‘rpx—y-‘z-ﬁ +sin0’1‘rpiL2Y£)

= (zcos B + ysinh)?,

where z £ Trp #{X,Y} and y 2 Trp L[X,Y]. Note that the right
hand side is maximum when cos§ = %-2%;7 and sinf = e and
the proposition follows.

O

Now we state the third distinguishing feature:

Extremal states (one-dimensional projections) are called pure states.
The set of all pure states in an n-dimensional complex Hilbert space is
a manifold of dimension 2n — 2. (The set of all extremal probability
distributions on a sample space of n points has cmainqlity n).

1.3 Measurements: von Neumann’s Collapse
Postulate

Suppose X is an observable (i.e. a Hermitian operator) with spectral

decomposition
X= 3" ABx.
AESP(X)
Then, the measurement of X in the quantum state p yields the value A
with probability Tr pE). If the observed value is A, then the state col-

lapses to
- _ ExpEy
Ao T pEy\’

The collapsed state gy has its support in the subspace E)(H).
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1.4 Dirac Notation

Elements of the Hilbert space H are called ket vectors and denoted by |u).
Elements of the dual space H* are called bra vectors and denoted by (u].
The bra (u| evaluated on the ket |v) is the bracket (u |v), the scalar
product between u,v as elements of H.

The operator |u)(v| is defined by

) (vl(fw)) £ (v | ) Ju).
It is a rank one operator when u and v are non-zero.
Tr [u)(v] = (v | u)
(la) D)t = |v) (ul

fur) (va|u2) (V3 Jun) (va] = ((v1 | u2) (v | us) -~ (vn—1 | un))|ur) (vnl-

The scalar product (u | v) is anti-linear (conjugate-linear) in the first
variable and linear in the second variable.

1.4.1 Qubits

The Hilbert space h 2 C2, with scalar product ([2],[§]) = Gc+bd, is
called a 1-qubit Hilbert space. Let

0

1l

0) = [})] and 1)

Then,
[‘;] = a|0) + b|1),

and the ket vectors |0) and |1) form an orthonormal basis for h.
The Hilbert space h®" = (C?)®" is called the n-qubit Hilbert space.
If 12 - -~ Ty is an n-length word from the binary alphabet {0, 1}, we let
A
|z122 - < @n) = |T1)|22) - - - |Zn)
A
Z|z1) ®|z2) ® - @ |zn)
A
= [x),
where x = 27 x 2% 4 2o x 2" 2 4 ... + 2, X 2 + z, (that is, as

Z1Z3...Tn varies over all n-length words, the integer x varies in the
range {0,1,...,2" — 1}).



