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Preface

This book begins with an introduction to algebraic geometry in the language of
schemes. Then, the general theory is illustrated through the study of arithmetic
surfaces and the reduction of algebraic curves. The origin of this work is notes
distributed to the participants of a course on arithmetic surfaces for graduate
students. The aim of the course was to describe the foundation of the geometry
of arithmetic surfaces as presented in [56] and [90], and the theory of stable
reduction [26]. In spite of the importance of recent developments in these subjects
and of their growing implications in number theory, unfortunately there does not
exist any book in the literature that treats these subjects in a systematic manner,
and at a level that is accessible to a student or to a mathematician who is not a
specialist in the field. The aim of this book is therefore to gather together these
results, now classical and indispensable in arithmetic geometry, in order to make
them more easily accessible to a larger audience.

The first part of the book presents general aspects of the theory of schemes.
It can be useful to a student of algebraic geometry, even if a thorough exami-
nation of the subjects treated in the second part is not required. Let us briefly
present the contents of the first seven chapters that make up this first part.
I believe that we cannot separate the learning of algebraic geometry from the
study of commutative algebra. That is the reason why the book starts with a
chapter on the tensor product, flatness, and formal completion. These notions
will frequently recur throughout the book. In the second chapter, we begin with
Hilbert’s Nullstellensatz, in order to give an intuitive basis for the theory of
schemes. Next, schemes and morphisms of schemes, as well as other basic notions,
are defined. In Chapter 3, we study the fibered product of schemes and the fun-
damental concept of base change. We examine the behavior of algebraic varieties
with respect to base change, before going on to proper morphisms and to projec-
tive morphisms. Chapter 4 treats local properties of schemes and of morphisms
such as normality and smoothness. We conclude with an elementary proof of
Zariski’s Main Theorem. The global aspect of schemes is approached through
the theory of coherent sheaves in Chapter 5. After studying coherent sheaves
on projective schemes, we define the Cech cohomology of sheaves, and we look
at some fundamental theorems such as Serre’s finiteness theorem, the theorem
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of formal functions, and as an application, Zariski’s connectedness principle.
Chapter 6 studies particular coherent sheaves: the sheaf of differentials, and, in
certain favorable cases (local complete intersections), the relative dualizing sheaf.
At the end of that chapter, we present Grothendieck’s duality theory. Chapter 7
starts with a rather general study of divisors, which is then restricted to the
case of projective curves over a field. The theorem of Riemann-Roch, as well
as Hurwitz’s theorem, are proven with the help of duality theory. The chapter
concludes with a detailed study of the Picard group of a not necessarily reduced
projective curve over an algebraically closed field. The necessity of studying sin-
gular curves arises, among other things, from the fact that an arithmetic (hence
regular) surface in general has fibers that are singular. These seven chapters can
be used for a basic course on algebraic geometry.

The second part of the book is made up of three chapters. Chapter 8 begins
with the study of blowing-ups. An intermediate section digresses towards com-
mutative algebra by giving, often without proof, some principal results concern-
ing Cohen-Macaulay, Nagata, and excellent rings. Next, we present the general
aspects of fibered surfaces over a Dedekind ring and the theory of desingulariza-
tion of surfaces. Chapter 9 studies intersection theory on an arithmetic surface,
and its applications. In particular, we show the adjunction formula, the factoriza-
tion theorem, Castelnuovo’s criterion, and the existence of the minimal regular
model. The last chapter treats the reduction theory of algebraic curves. After
discussing general properties that essentially follow from the study of arithmetic
surfaces, we treat the different types of reduction of elliptic curves in detail. The
end of the chapter is devoted to stable curves and stable reduction. We describe
the proof of the stable reduction theorem of Deligne-Mumford by Artin—Winters,
and we give some concrete examples of computations of the stable reduction.

From the outset, the book was written with arithmetic geometry in mind. In
particular, we almost never suppose that the base field is algebraically closed,
nor of characteristic zero, nor even perfect. Likewise, for the arithmetic surfaces,
in general we do not impose any hypothesis on the base (Dedekind) rings. In
fact, it does not demand much effort to work in general conditions, and does not
affect the presentation in an unreasonable way. The advantage is that it lets us
acquire good reflexes right from the beginning.

As far as possible, the treatment is self-contained. The prerequisites for read-
ing this book are therefore rather few. A good undergraduate student, and in
any case a graduate student, possesses, in principle, the background necessary
to begin reading the book. In addressing beginners, I have found it necessary to
render concepts explicit with examples, and above all exercises. In this spirit,
all sections end with a list of exercises. Some are simple applications of already
proven results, others are statements of results which did not fit in the main
text. All are sufficiently detailed to be solved with a minimum of effort. This
book should therefore allow the reader to approach more specialized works such
as [25] and [15] with more ease.
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1

Some topicsin commutative
algebra

Unless otherwise specified, all rings in this book will be supposed commutative
and with unit.

In this chapter, we introduce some indispensable basic notions of commuta-
tive algebra such as the tensor product, localization, and flatness. Other, more
elaborate notions will be dealt with later, as they are needed. We assume that
the reader is familiar with linear algebra over a commutative ring, and with
Noetherian rings and modules.

1.1 Tensor products

In the theory of schemes, the fibered product plays an important role (in particu-
lar the technique of base change). The corresponding notion in commutative
algebra is the tensor product of modules over a ring.

1.1.1 Tensor product of modules

Definition 1.1. Let A be a commutative ring with unit. Let M, N be two
A-modules. The tensor product of M and N over A is defined to be an A-module
H, together with a bilinear map ¢ : M x N — H satisfying the following universal
property:
For every A-module L and every bilinear map f : M x N — L, there
exists a unique homomorphism of A-modules f : H — L making the
following diagram commutative:

MxN—I L1

|

H
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Proposition 1.2. Let A be a ring, and let M, N be A-modules. The tensor
product (H, ¢) exists, and is unique up to isomorphism.

Proof As the solution of a universal problem, the uniqueness is automatic, and
its proof is standard. We give it here as an example. Let (H,¢) and (H’, ¢’) be
two solutions. By the universal property, ¢ and ¢’ factor respectively as ¢ = ¢o¢’
and ¢/ = ¢/ o ¢. It follows that = (pod )o¢. As ¢ =Id o ¢, it follows from
the uniqueness of the decomposition of ¢ that (¢ ¢’) = Id. Thus we see that
é:H — H'is an isomorphism.

Let us now show existence. Consider the free A-module AM*N) with basis
M x N. Let {€zy}(z,y)emxn denote its canonical basis. Let L be the submodule
of AMMXN) generated by the elements having one of the following forms:

€x1+z2,y ~ €z1,y ~ Czoyy
€z,y1+y2 ~ €z,y; — Cz,y,
€az,y — €z,ay, O€zy — €azy, aE A.

Let H= AM>*N)/L and ¢ : M x N — H be the map defined by d(z,y) =
the image of e, ,, in H. One immediately verifies that the pair (H, ¢) verifies the
universal property mentioned above. o

Notation. We denote the tensor product of M and N by (M®4 N, ¢). In general,
the map ¢ is omitted in the notation. For any (x,y) € M x N, we let ®y denote
its image by ¢. By the bilinearity of ¢, we have a(z ® y) = (az) ® y = z ® (ay)
for every a € A.

Remark 1.3. By construction, M ®4 N is generated as an A-module by its
elements of the form z ® y. Thus every element of M ®4 N can be written

(though not in a unique manner) as a finite sum 3, z; ® y;, with z; € M and
¥i € N. In general, an element of M ® 4 N cannot be written = ® y.

Example 1.4. Let A =7, M = A/2A, and N = A/3A. Then M ®4 N = 0.
In fact, for every (z,y) € M x N, we have z® y = 3(z ® y) — 2z Q@ y) =
z®By) - (2x)®y =0.

Proposition 1.5. Let A be a ring, and let M, N, M; be A-modules. We have
the following canonical isomorphisms of A-modules:

(a) M®s A~ M;

(b) (commutativity) M ® 4 N ~ N ®4 M;

(c) (associativity) (L®a M)®aN~L®4 (M ®4N);

(d) (distributivity) (@ie]Mi) R4 N ~ @ieI(Mi Xa N)
Proof Everything follows from the universal property. Let us, for example,
show (a) and (d).

(a) Let ¢ : M x A — M be the bilinear map defined by (z,a) — az. For any
bilinear map f: M x A — L, set f: M — L,z f(z,1). Then f = f o ¢, and

f is the unique linear map M — L having this property. Hence (M, @) is the
tensor product of M and A.



