

Dictionary of Genomics, Transcriptomics and Proteomics

Fourth, Greatly Enlarged Edition

Volume 2 L-Q

Language gene · Living array · L-shuffling · Medical sequencing · Memory suppressor gene · Messenger RNAbased vaccine · Metagenomic library nethylSNP · microRNA microarray NA · MicraRNA disease C generation sequencin coding transcription · N positioning code · Onc RNA · Optical tweezers end mapping · Pan-geno nucleic acid · Phylogenetic si Progeroid gene · Promoter tra nanoarray · Protein thermometer · uadruplet codon

Günter Kahl

The Dictionary of Genomics, Transcriptomics and Proteomics

Fourth, Greatly Enlarged Edition

Volume 2: L-Q

WILEY-VCH Verlag GmbH & Co. KGaA

The Author

Günter Kahl

Johann Wolfgang Goethe-University Molecular BioSciences, Biocenter Max-von-Laue-Staße 9 60438 Frankfurt am Main Germany

and

GenXPro GmbH Frankfurt Innovation Center Biotechnology (FIZ) Altenhöferallee 3 60438 Frankfurt am Main Germany

Chinese Edition published in 2004

Cover Illustration

The Title Page shows a three-dimensional image of a nucleosome, in which the DNA double-helix is depicted as intertwined brownish ribbons (the phosphate backbone), from which the bases protrude (in green-blue colour). About 1.7 turns of DNA are wrapped around the histone core, where histone H2A comes in yellow, H2B in red, H3 in blue, and H4 in green colours. The H₂N-termini of the four histones emerge from the nucleosome as reels in the corresponding colour. The inset portrays the interaction between the phosphate backbone of the DNA with histone H3 K56 mediated by water molecules.

The graph was produced from pdb file 1KX5 with Pymol, and kindly provided by Heinz Neumann and Jason Chin, Division of Protein and Nucleic Acid Chemistry, Evolution and Synthesis of New Function, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from
the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de>.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition SNP Best-set Typesetter Ltd., Hong Kong Printing betz-druck GmbH, Darmstadt Bookbinding Litges & Dopf GmbH, Heppenheim

Printed in the Federal Republic of Germany Printed on acid-free paper

ISBN: 978-3-527-32073-8

Related Titles

Singleton, P.

Dictionary of DNA and Genome Technology

2008

ISBN: 978-1-4051-5608-0

Dunn, M. J., Jorde, L. B., Little, P. F. R., Subramaniam, S. (eds.)

Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics

8 Volume Set

2006

ISBN: 978-0-470-84974-3

Kahl, G., Meksem, K. (eds.)

The Handbook of Plant Functional Genomics

Concepts and Protocols

2008

ISBN: 978-3-527-31885-8

Meksem, K., Kahl, G. (eds.)

The Handbook of Plant Genome Mapping

Genetic and Physical Mapping

402 pages with 77 figures and 11 tables 2005

Hardcover

ISBN: 978-3-527-31116-3

Günter Kahl

The Dictionary of Genomics, Transcriptomics and Proteomics

此为试读,需要完整PDF请访问: www.ertongbook.com

It is a pleasure to dedicate these three volumes to my friends, colleagues, and foreign visitors of

in the Frankfurt Research Innovation Centre Biotechnology in Frankfurt am Main (Germany).

Preface

Η γνώση των λέξεων οδηγεί στην γνώση των πραγμάτων (The knowledge of words leads to a knowledge of things) (Πλάτων, Platon, 427–347 B.C.)

The glamour and excitement of genetic engineering during the past three decades have given way to routine and almost trivial daily work in the laboratory. Many of the young researchers are nevertheless still fascinated by the precision of the various gene technologies and the surprising possibilities they offer, and even seasoned researchers are enchanted by this ever-growing field of molecular genetics. It is fair to say that gene technology has now infiltrated all areas of molecular biology, and massively contributed to the vast information in this field, that is accumulating at a more explosive rate than ever before. This phenomenal development forces to divide the field of gene technology into at least three subsections: **genomics**, **transcriptomics**, and **proteomics**, and this is exactly done in the present opus.

"This book contains a considerable volume of informations.

I deeply regret this, but unfortunately it was inevitable."
(Samuel Langhorne Clemens alias Mark Twain, 1835–1910)

With the immense growth of the three, and other related areas of molecular biology, the number of novel technologies, procedures and technical terms is soaring. So, the present three volumes contain a total of 12,000 different terms, many of them describing recent developments and brand-new technologies. It is therefore the most comprehensive collection of descriptions of molecular processes and techniques worldwide. Some of the terms and their multiple variants dominate. For example, traditional PCR and its numerous facets comprises some 190 entries, surpassed by the terminology around microarray with more than 250 entries, and well over 100 "omics" neologisms mess up both literature and daily language. The second ("next"), and emerging third ("next-next") generation sequencing technologies brought a burst in novel terminology, not to speak of the many other cutting-edge techniques that appear almost daily.

"Make everything as simple as possible, but not simpler!"

Albert Einstein (1879–1955)

This flood of terms and acronyms sometimes leaves the researcher a bit helpless, especially since a single term might mean different things, and many different terms may mean the same single thing. The present volumes aim at ordering this chaos a bit, and are not restricted to the omics trilogy (or even gene technology), but link to other related disciplines and describe relevant terms, if considered to be necessary or helpful for a

The Dictionary of Genomics, Transcriptomics and Proteomics, 4th Ed., Günter Kahl Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32073-8

Preface VIII

better understanding. Obviously, the growing number of proteins cannot be treated with in such a dictionary, especially since the peptides, proteins, and their isoforms will probably be in their millions. Therefore only a limited selection is portrayed. Another problem was, is, and will be, the extent of description. Some entries are described in some depth, some others only defined spartanically.

"Going too far is as bad as not going far enough"

(Chinese proverb)

My prime appreciations go to my son Uwe Kahl, who took the tantalizing task to draw a multitude of figures and schemes from partly fragmented and absolutely insufficient samples. He did a great job! I also thank Achim Wilz for his patient introduction into the various facets and pitfalls of the computer world. Sigrid – as always – gave me all her support and the freedom needed for such a work.

These three books are dedicated to all people of GenXPro GmbH in the Frankfurt Innovation Center Biotechnology (FIZ, Frankfurt am Main, Germany). Since excellent science is nowadays also daily work in companies, I learned a lot and hopefully could give a tiny bit to the energetic people of this dynamic enterprise. I am in fact grateful for all the discussions, scientific turns and innovations, and all the adventures that accompany a young spin-off company: a very rewarding experience.

I appreciate the hospitality of various institutions in different countries, where I have been working on this opus over the last years, as there is The Research Institute for Bioresources (Kurashiki, Japan), the Department of Biology and Molecular Biology (University of California at Los Angeles, USA), the International Center for Agricultural Research in the Dry Areas (Aleppo, Syria), the Centro Agronomico Tropical (Turrialba, Costa Rica), the Iwate Biotechnology Research Institute (Kitakami, Japan), and the Pharma Center (University of Vienna, Austria).

Frankfurt am Main, September 2008

Günter Kahl

Instructions for Users

All the entries are arranged in strict alphabetical order, letter by letter. For example, "mismatched primer" precedes "mismatch gene synthesis", and this is followed by "mismatch repair". Or, "photo-digoxygenin" precedes "photo-footprinting", which in turn precedes "photo-reactivation". In case an entry starts with, or contains a Roman, Greek or Arabic numeral, it has first to be translated into Latin script. A few examples illustrate the translation:

cI : c-one

exonuclease VII : exonuclease seven exonuclease III : exonuclease three

5' : five prime

G 418 : G fourhundred and eighteen

 $\begin{array}{ll} \lambda & : lambda \\ P1 & : p\textbf{-o}ne \end{array}$

ΦX 174 : phi **X** one-seven-four

 $Q\beta$: q-beta RP 4 : RP four

For help, the user may consult the Greek alphabet and the Roman numerals below.

- The main entry title, printed in bold type, is followed by synonyms in parentheses.
 Italicized letters in titles (and text) of entries indicate use of these letters for abbreviations.
- Cross referencing is either indicated by an arrow, or the words "see", "see also", and "compare".
- By using the cross-references as a road map between definitions, the reader will gain an appreciation of molecular biology as an integrated whole rather than a collection of fragments of isolated information.
- Organismal name: The formal Latin binomial names of organisms are italicized, whereas common names and derivatives of the Latin names are not.
- Etymology of the terms: Most biological terms originate from Greek or Latin language. Only the most common word roots are defined in this dictionary.

Greek Alphabet and Roman Numerals

Greek alphabet:

Capital	Lower case	Name	Capital	Lower case	Name
A	α	alpha	N	ν	nu
В	β	beta	Ξ	ξ	xi
Γ	γ	gamma	O	0	omicron
Δ	δ , δ	delta	П	π	pi
E	ε	epsilon	P	ρ	rho
Z	ζ	zeta	Σ	σ, ς	sigma
H	η	eta	T	τ	tau
Θ	θ, ϑ	theta	Y	υ	ypsilon
I	1	iota	Φ	φ	phi
K	κ	kappa	X	χ	chi
Λ	λ	lambda	Ψ	Ψ	psi
M	μ	mu	Ω	ω	omega

Roman numerals:

I	II	III	IV	V	VI	VII	VIII	IX	X
1	2	3	4	5	6	7	8	9	10
XX	XXX	XL	L	LX	LXX	LXXX	XC	IC	C
20	30	40	50	60	70	80	90	99	100
CC	CCC	CD	D	DC	DCC	DCCC	CM	XM	M
200	300	400	500	600	700	800	900	990	1000

Abbreviations and Symbols

- atto (10⁻¹⁸) a Α - adenine or adenosine, absorbance Å - Ångstrom unit (1 Å = 0.1 nm)- approximately - approximately equals \cong - analog-to-digital A/D - amino acid aa Ab antibody - antigen Ag - ampicillin Ap ATP - adenosine triphosphate В - any nucleobase (A,C,G,or T) - bacterial artificial chromosome BAC Bis - N, N'-methylenebisacrylamide BLAST - basic local alignment search tool base pair(s) bp Bq - Becquerel - bovine serum albumin BSA C – centi (10⁻²) C - cytosine or cytidine 14C - radioactive carbon °C - centigrade (degrees Celsius) Ca - Calcium CBB - Coomassie Brilliant Blue CCD - charge-coupled device cDNA - complementary DNA CE - capillary electrophoresis **CGE** - capillary gel electrophoresis Ci - Curie cm - centimeter(s) Cm - chloramphenicol CO_2 carbon dioxide - counts per minute cpm **CTAB** - cetyltrimethylammonium bromide Cy - cvanine D, Da Dalton - DNA amplification fingerprinting DAF - deoxyadenosine triphosphate dATP dCTP - deoxycytosine triphosphate

The Dictionary of Genomics, Transcriptomics and Proteomics, 4th Ed., Günter Kahl Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32073-8

ddNTP – 2′, 3′-dideoxynucleotide triphosphate – denaturing gradient gel electrophoresis

dGTP – deoxyguanosine triphosphate DMF – N, N-dimethylformamide

DMSO – dimethyl sulfoxide
DMT, DMTr – dimethyloxytrityl
DNA – deoxyribonucleic acid
DNase – deoxyribonuclease

dNTP – deoxynucleotide triphosphate

ds – double-stranded dT – deoxythymidine

DTT – dithiothreitol, Cleland's reagent
dTTP – deoxythymidine triphosphate
dUTP – deoxyuridine triphosphate
EC – enzyme classification number
ECL – enhanced chemiluminescence

E. coli –Escherichia coli

EDTA – ethylenediaminetetraacetic acid

EGTA – ethylene glycol-bis (β-aminoethylether) N,N,N',N'-tetraacetic acid

e.g. – for example

ELISA – enzyme-linked immunosorbent assay

ESI – electrospray ionization

ESI-MS – electrospray ionization mass spectrometry

EST – expressed sequence tag
EtBr – ethidium bromide

EtOH – ethanol f – femto (10^{-15})

Fab – antigen-binding region of an antibody FACS – fluorescence-activated cell sorter FIGE – field inversion get electrophoresis

FITC – fluorescein isothiocyanate

fmol – femto mol

5' – carbon atom 5 of deoxyribose

g – gram(s) or gravity

G – guanine or guanidine, giga (10⁹)

Gb – gigabase

GC – gas chromatography
GFP – green fluorescent protein

Gm – gentamycin

GMO – genetically modified organism

> - greater than h - hour(s)

HAC – human artificial chromosome
 Tritium, radioactive hydrogen

HCl - hydrochloric acid

- N-(2-hydroxyethyl) piperazine-N'-(2-ethanesulfonic acid) HEPES - human genome project HGP - human immunodeficiency virus HIV - high-performance capillary electrophoresis **HPCE** - high pressure liquid chromatography HPLC HRP horseradish peroxidase - high Tris-EDTA buffer HTE H₂O water - hydrogen peroxide H_2O_2 - hypertext mark-up language HTML hypervariable region HVR - that is i.e. IEF isoelectric focusing - immunoglobulin Ig - intellectual property IP - intervening sequence, intron **IVS** - kilo (10³) k kb kilobase(s) KB kilobyte - kilobase pairs kbp kD (kDa) - kilo Dalton - kilogram(s) kg kanamycin Km liter(s) less than < - liquid chromatography LC lithium chloride LiCl laser-induced fluorescence LIF - low Tris-EDTA buffer LTE mAb monoclonal antibody MALDI-MS - matrix-assisted laser desorption/ionization-mass-spectrometry - meter(s) or milli (10^{-3}) m $- \text{ micro } (10^{-6})$ μ - microgram(s) μg microliter(s) μl - molar or mega (106) M - megabase pairs Mb (Mbp) - megabyte MB - multiple cloning site MCS - magnesium Mg - milligram(s) mg - magnesium chloride $MgCl_2$

- magnesium sulfate

- minute(s)

- milliliter(s)

MgSO₄

min

ml

mm – millimeter(s)
mM – millimolar
mmol – millimole
mol – mole

M_r – relative molecular mass (no dimension)

mRNA – messenger RNA MS – mass spectrometry

MS/MS – tandem mass spectrometry

mtDNA – mitochondrial DNA

MW – molecular weight

m/z – mass-to-charge ratio

n – number or nano (10⁻⁹)

NaCl – sodium chloride

 Na_2EDTA — disodium-EDTA NC — nitrocellulose ng — nanogram(s)

 NH_4Cl – ammonium chloride NH_4OAc – ammonium acetate

nm – nanometer(s)

NMR – nuclear magnetic resonance

nt – nucleotide
OD – optical density
ODN – oligodeoxynucleotide

OH – hydroxy

oligo – oligonucleotide(s)
ORF – open reading frame
ORN – oligoribonucleotide

P – phosphorus p – pico (10⁻¹²)

P_i – inorganic phosphorus ³²P – radioactive phosphorus

PAGE – polycrylamide gel electrophoresis

PBS – phsphate buffered saline PCR – polymerase chain reaction

PEG – polyethylene glycol

Petabyte (PB) -10^{15} bytes

PFGE – pulsed field gel electrophoresis

pfu – plaque forming unit

pg – picogram(s)

pH – logarithm of reciprocal of hydrogen (H) ion concentration

pI – isoelectric point

PMS – phenazine methosulfate PMSF – phenylmethylsulfonyl fluoride

PNA – peptide nucleic acid

pp – page(s)

ppm – parts per million
PSD – post-source decay
PTFE – polytetrafluoroethylene
PVDF – polyvinylidene difluoride
PVP – polyvinyl pyrolidone

RAPD - random amplified polymorphic DNA

RFL - restriction fragment length

RFLP(s) – restriction fragment length polymorphism(s)

RIA – radioimmunoassay
RNA – ribonucleic acid
RNase – ribonuclease
RP – reversed phase

rpm - revolutions per minute

rRNA – ribosomal RNA

RT – room temperature (also reverse transcriptase)

RT-PCR - reverse transcriptase PCR

³⁵S – radioactive sulfur

SAGE – serial analysis of gene expression

SD - standard deviation

SDS – sodium dodecyl sulfate, lauryl sulfate
SE (SEM) – standard error (standard error of the mean)

 $\begin{array}{lll} & -\operatorname{second(s)} \\ \Sigma & -\operatorname{sum of} \\ & -\operatorname{streptomycin} \\ & -\operatorname{signal-to-noise ratio} \end{array}$

SNP – single nucleotide polymorphism

ss – single-stranded

SSC – sodium chloride sodium citrate (saline sodium citrate)

SSCP – single-strand conformation polymorphism

ssDNA - single-stranded DNA

SSO – sequence-specific oligonucleotide

SSP – sequence-specific probe

SSPE – sodium chloride-sodium phosphate-EDTA

STR – short tandem repeat

T — thymine or thymidine, tera (10^{12})

 $\tau_{1/2}$ – half-life

TAE - Tris-acetate-EDTA
TBE - Tris-borate-EDTA
TBS - Tris-buffered saline

Tc – tetracycline

TCA – trichloroacetic acid TE – Tris-EDTA-buffer

TEMED – N, N, N', N'-tetramethylethylene diamine

Terabyte (TB) -10^{12} bytes

3' – carbon atom 3 of deoxyribose

TLC — thin-layer chromatography T_m — melting temperature

TOF – time of flight
Tp – trimethoprim

Tris - tris (hydroxymethyl) aminomethane

tRNA – transfer RNA

U – unit(s)

U - uracil or uridine

URL – uniform resource locator

UV – ultraviolet V – voltage, volt(s)

VNTR – variable number of tandem repeats

vol – volume

v/v – volume/volume w/v – weight/volume www – world wide web

X – mean

 χ^2 — chi squared

YAC – yeast artificial chromosome

yr – year(s)

Contents

Instructions for Users	X
A to Z	828
Appendix 1 Units and Conversion Factors 1	829
Appendix 2 Restriction Endonucleases	834
Appendix 3 Databases	.841
Appendix 4 Scientific Journals	.851
Appendix 5 Acknowledgements	862