ROBERT W. SEBESTA

VAX

STRUCTURED
ASSEMBLY
LANGUAGE
PROGRAMMING

Second Edition

Robert W. Sebesta

University of Colorado
at Colorado Springs

A
A O
's) vy

OhM Y \\0

The Benjamin/Cummings Publishing Company, Inc.
Redwood City, California ® Menlo Park, California
Reading, Massachusetts ® New York e Don Mills, Ontario
Wokingham, UK. ¢ Amsterdam e Bonn e Sydney
Singapore ¢ Tokyo e Madrid ¢ San Juan

To Joanne

Sponsoring Editor: John Thompson

Production Coordinator: Eleanor Renner Brown

Cover and Chapter Opener Designer: Eleanor Mennick

Electronic Composition and Art: Ocean View Technical Publications

VAX is a registered trademark of the Digital Equipment Corporation

Copyright © 1991 by The Benjamin/Cummings Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

Library of Congress Cataloging-in-Publication Data
Sebesta, Robert W.
VAX : structured assembly language programming / Robert W.
Sebesta. — 2nd ed.
p- cm.
Rev. ed. of VAX II. © 1984.
Includes index.
ISBN 0-8053-7122-2
1. VAX-11 (Computer)—Programming. 2. Assembler language
(Computer program language) 3. Structured programming.
I. Sebesta, Robert W. VAX 11 II Title.
QA76.8.V3754 1991
005.2'45—dc20 90-26190
CIP

ISBN 0-8053-7122-2

234567 89 10 HA 95 94 93 92 91

‘K
The Benjamin/Cummings Publishing Company, Inc.
390 Bridge Parkway

Redwood City, California 94065

VAX

STRUCTURED
ASSEMBLY
LANGUAGE
PROGRAMMING

Second Edition

THE BENJAMIN /CUMMINGS SERIES IN COMPUTER SCIENCE

G. Booch,
Object-Oriented Design with Applications (1989)
G. Brookshear
Computer Science: An Overview, Third Edition (1991)
F. Carrano
Assembler Language Programming for the IBM 370 (1988)
D. M. Etter
Structured FORTRAN 77 for Engineers and Scientists, Third Edition (1990)
P. Helman, R. Veroff, and F. Carrano
Intermediate Problem Solving and Data Structures: Walls and Mirrors,
Second Edition (1991)
P. Helman and R. Veroff
Walls and Mirrors: Intermediate Problem Solving and Data Structures—Modula II
(1988)
N. Miller and C. G. Peterson
File Structures With Ada (1990)
A. Kelley and I. Pohl
A Book on C: An Introduction to Programming in C, Second Edition (1990)
A. Kelley and I. Pohl
C by Dissection: The Essentials of C Programming (1988)
L. Pohl
C++ for C Programmers
I. Pohl '
C++ for Pascal Programmers
1. Pohl
~ Turbo C++ (1991)
W. J. Savitch . LY
Pascal: An'Introduction to the Art and Science of Programming, Third Edition (1990)
W. J. Savitch
Turbo Pascal 4.0/5.0 with 5.5 Supplement (1990)
R. Sebesta
VAX Structured Assembly Language Programming, Second Edition (1991)
R. Sebesta
Concepts of Programming Languages (1989)
M. Thorne
Computer Organization and Assembly Language Programming for IBM PCs and
Compatibles (1991)

Titles of Related Interest
M. Sobell
A Practical Guide to the UNIX System, Second Edition (1989)

M. Sobell
A Practical Guide to UNIX System V, Version 4 (1991)

PREFACE

This book is intended to be used for the standard course on assembly language
programming, with the assumption that the reader has had at least one course in
high-level language programming.

Learning an assembly language has two related yet distinct benefits: the
acquisition of the skill of producing software in assembly language and gaining
an in-depth knowledge of the architecture of a particular computer.

In this book the VAX series of superminicomputers is presented as a vehicle
for discussing these two topics, because we believe that the VAX is particularly
suited to the study of assembly language. First, the VAX architecture represents
that of many other computers. The VAX instruction set includes many of the
features of the instruction sets of other computers. As a result, the assembly
languages of most other computers are easy to learn for those who know VAX
assembly language. The second advantage of studying VAX assembly language
lies in the complexity of the VAX architecture. The VAX has a rich set of instruc-
tions and addressing modes that make programming it in assembly language far
easier than on simpler computers. The obvious price of this higher degree of
writeability is the increased difficulty in learning the assembly language. How-
ever, the orthogonality of the VAX instruction set goes a long way toward bal-
ancing the increase in complexity with a measure of elegant simplicity.

Our approach to software development in assembly language is as follows.
A pseudocode solution to a given problem is created first. This pseudocode is
then translated, using consistent techniques, to an assembly language program.
The pseudocode is included as comments in the final program, providing docu-
mentation. This program design methodology is described in detail and used in
all example programs. This method, which is clearly a top-down approach,
results in well-structured programs that are reasonably easy to read, while sacri-
ficing very little in efficiency.

Macroinstructions are used for terminal input and output. This allows the
reader to write complete programs very early in the course. Getting such an early
start is important, because we believe that a significant amount of programming
experience is necessary to acquire the expertise to be an effective assembly lan-
guage programmer.

vi

Preface

Features of the Book

Program Examples

This book contains a large number of program examples, many of which are
complete stand-alone programs. Most of the complete examples are preceded by
pseudocode algorithms that describe their actions.

The VAX/VMS Debugger

There is an entire chapter devoted to the VAX/VMS Debugger. This chapter
describes the most useful debugger commands, including screen mode use of the
debugger. The complete text of a debugging session is also included.

Input/Output Macroinstructions

Macroinstructions for terminal input and output of three integer type values and
character strings, and also output for floating-point values, are used for the
example programs. The software package that provides these services also
includes a macro for dumping registers and memory. The method of obtaining
this software is described below.

Student Aids

Every chapter except the first has a summary, lists of new terms and new instruc-
tions, and a problem set. Nearly all of the problem sets have both programming
and nonprogramming exercises. We have included a description of all of the
nonprivileged VAX instructions. Instructors who feel that the entire instruction
set cannot be effectively covered in a course can choose sections to exclude
according to their tastes.

The VAX Record Management System

The book has a complete chapter on RMS, the VMS subsystem that the
VAX/VMS high-level languages use for input and output.

Preface

An Alternative Introduction

Appendix A contains a chapter-length introduction to computer organization,
machine language, and assembly language programming. This appendix uses a
very simple and idealized computer named SIMCOM. The SIMCOM approach
to introducing the important concepts of this book is intended to be used for
classes in which the students have relatively weak backgrounds in computing
(for example, those who have not had a course in computer organization and
have never learned anything about instruction sets and low-level programming).

Instructional Software

Both the SIMCOM simulator and the VAX input/output package are available
through an anonymous FIP account from node HAPPY.UCCS.COLO-
RADO.EDU. The user id is ANONYMOUS and the password is GUEST. All of
the required files are in the directory named MACRO. For further information
about software please contact the author at the University of Colorado at Colo-
rado Springs or your local Benjamin/Cummings representative.

Using the Book in the Classroom

Chapter 1 contains background information on the evolution of computer archi-
tecture and computer languages, along with some justification for learning any
assembly language, and VAX assembly language in particular. Chapter 2 covers
the necessary material on binary and hexadecimal numbers, the addition and
subtraction operations on binary and hexadecimal numbers, number base con-
versions, and twos complement notation. Chapters 1 and 2 may be skipped by
classes whose students have some background in computer organization and
binary and hexadecimal arithmetic.

Most of the essential material of the book appears in Chapters 3-11. Chapter
3 first describes general computer architecture and CPU operation, and then
introduces the VAX architecture and a small collection of VAX instructions and
directives. The process of writing and running complete programs is also
described.

Chapter 4 introduces VAX assembly language implementations of the funda-
mental program control constructs. The methodology uses standard techniques
of implementing pseudocode versions of selection and looping structures.

vii

viii

Preface

Chapter 5 is a description of the VAX/VMS debugger, including its use in
screen mode. A complete debugging session on an example program is a signifi-
cant part of the chapter.

Chapter 6 introduces the other VAX integer data types, operand expressions,
and simple macros. Chapter 7 discusses the use of indexing for array processing
and the VAX implementation of indexing. Chapter 8 introduces the concept of
indirect addressing and covers the VAX addressing modes that implement it.

Chapter 9 describes the character manipulation instructions of the VAX and
how they can be used for programming solutions to simple problems.

Chapter 10 is a thorough discussion of VAX assembly language subpro-
grams, including the various parameter passing methods, recursion, and subpro-
gram libraries. Chapter 11 covers the remaining features of macros, along with all
of the VAX techniques for conditional assembly.

Chapter 12 describes VAX facilities for dealing with floating-point and deci-
mal data. Bit and logic instructions and their applications are discussed in Chap-
ter 13. Chapter 14 briefly describes the fundamental features of the RMS
input/output system of VAX/VMS.

Acknowledgments

Textbooks are created over a long period of time by a large number of people.
Some of the people who were involved in the development of this book deserve
mention here.

The first edition of this book was reviewed by Theodore Bashkow of Colum-
bia University, M. Faiman of the University of Illinois, George Rice of De Anza
College, Arthur Gill of the University of California at Berkeley, Henry Leitner of
Harvard University (Aiken Computation Laboratory), and Robert Muller of Bos-
ton University. Richie L. Lary of Digital performed a technical review of the first
edition.

The second edition was reviewed by John Sheehan of San Francisco State
University and Myers L. Foreman of Lamar University.

Alan Apt, former editor at Benjamin/Cummings, encouraged and advised
me throughout the efforts to produce the two editions cf this book.

The UCCS Computer Center provided the use of their VAX systems for the
development of the input/output package and the example programs that
appear in this book.

Finally, I thank my wife Joanne for her patience during the seemingly end-
less hours it has taken me to write the two editions of this book.

ROBERT W. SEBESTA

O© 0 N9 & U &= WU N =

S S G o
G B W N =R O

BRIEF CONTENTS

Introduction 1

Nondecimal Numbers and Arithmetic 13

Introduction to Computer Architecture and Assembly Language 37

Repetition and Selection Structures 77
Using the VAX/VMS Debugger 107

Integer Data Types, Operand Expressions, and Simple Macros 135

Arrays and Indexing 167

Indirect Addressing 189

Character Manipulation 225

Subprograms 251

Macros and Conditional Assembly 287
Floating-Point and Decimal Instructions 311
Bit and Logic Operations 341

VAX Input/Output 367

Additional Features 385

Appendix A A Simple Computer 405

Appendix B HEX/Decimal Conversion Table 437
Appendix C ASCII Codes 439

Appendix D Answers to Selected Problems 441
Appendix E Using the TPU Editor 447
Appendix F VAX Instruction Summary 455
Index 475

CONTENTS

1 Introduction 1

1.1 The Evolution of Contemporary Computer Architecture 2
1.2 The Evolution of Computer Languages 4
1.3 Reasons to Study Assembly-Language Programming 9
1.4 The VAX Family of Computers 10
1.5 Why Study the VAX? 11
2 Nondecimal Numbers and Arithmetic 13
2.1 Positional Number Systems 14
2.2 Binary and Hexadecimal Numbers 14
2.3 Addition and Subtraction 17
2.3.1 Addition 17
2.3.2 Subtraction 20
2.4 Conversions Between Number Bases 22
2.4.1 Conversion to Decimal Numbers 23
2.4.2 Conversion Between Binary and Hex Numbers 24
2.4.3 Conversion to Nondecimal Numbers 26
2.4.4 Conversion of Fractions 27
2.5 Twos Complement Notation 29
3 Introduction to Computer Architecture and Assembly Language 37
3.1 General Computer Architecture 38
3.1.1 Introduction 38
3.1.2 Main Memory 38
3.1.3 Byte-Forward and Byte-Backward Representations 41
3.1.4 Central Processing Unit 43
3.1.5 Input and Output Devices 43
3.1.6 Machine Instruction Formats 44
3.2 CPU Operation—The Fetch-Execute Cycle 45

x1i Contents

3.3 Introduction to VAX Architecture 47

3.4 LONGWORD Integer Instructions 50
3.4.1 Symbols and Storage Allocation 51
3.4.2 Simple Machine Instruction Formats 53
3.4.3 Data Move Instructions 56
3.4.4 Arithmetic Instructions 57
3.45 An Example Program Segment 59
3.4.6 Constant Operands 60
3.4.7 Input and Output 61

3.5 Running VAX Assembly-Language Programs 62
3.5.1 Required Assembler Directives 63
3.5.2 Program Creation, Assembly, Linking, and Execution 65

3.6 Runtime Errors 70

4 Repetition and Selection Structures 77

4.1 Branch Instructions 78
4.1.1 Unconditional Branch Instructions 78
4.1.2 Conditional Branch Instructions 79

4.2 Pretest Logical Loops 83

4.3 Selection Structures 86

4.4 Counter-Controlled Loops 89

4.5 More Loop Instructions 95

4.6 Compound Conditions 97

4.7 The Assembly Process 99

4.8 More Directives 101

5 Using the VAX/VMS Debugger 107

5.1 What Is a Debugger? 107

5.2 Breakpoints, Tracepoints, and Watchpoints 108
5.2.1 Address Points 108
5.2.1 Breakpoints 109
5.2.3 Tracepoints 111
5.2.4 Watchpoints 113

5.3 Running Programs with the Debugger 114

5.4 EXAMINE and DEPOSIT Commands 116

Contents

5.5 Getting Into and Out of the Debugger 119
5.5.1 Changing Parameter Default Values 120
5.5.2 Breakpoint DO Options 121
5.6 A Sample Debugging Session 122
5.7 Using the Debugger in Screen Mode 127
5.7.1 Display Configurations 127
5.7.2 Using the Keypad 129
5.8 The DUMP Instruction 131
Integer Data Types, Operand Expressions, and Simple Macros 135
6.1 The Other Integer Data Types 136
6.1.1 Integer Data Types 136
6.1.2 Directives 137
6.1.3 Move and Arithmetic Instructions 138
6.1.4 Test, Compare, and Loop Instructions 143
6.1.5 Size Conversion Instructions 144
6.1.6 The Debugger and Non-LONGWORD Integers 145
6.1.7 Input and Output of Non-LONGWORD Integers 145
6.2 Operand Expressions 146
6.3 Constants of Nondecimal Bases 148
6.4 Direct Assignment Statements 148
6.5 A Sample Program 150
6.6 The Overflow and Carry Indicators 152
6.7 Simple Macros 154
6.1.7 The Macro Concept 154
6.7.2 Parameterless Macros 155
6.7.3 Passing Parameters to Macros 156
6.7.4 Macro Listing Control 159
Arrays and Indexing 167

7.1 The Need for Arrays 167

7.2 The Concept of Indexing 169

7.3 Indexing on the VAX 170
7.3.1 VAX Assembly-Language Indexing Syntax 171
7.3.2 Indexing Operation 173

xiii

Xiv Contents

7.4 The INDEX Instruction 181
7.5 Matrices 182

8 Indirect Addressing 189

8.1 The Concept of Indirect Addressing 190
8.2 Register-deferred Addressing Mode 190
8.3 Autoincrement and Autodecrement Addressing Modes 193
8.4 Displacement Mode 203
8.5 Relative-deferred Mode 207
8.6 Two Levels of Indirectness 211
8.7 Summary of Effective Address Computation 215
8.8 Relative Speeds of Some Addressing Modes 217
8.9 Controlling the Sizes of Displacements 218
8.10 Indirect Addressing and the Debugger 219
9 Character Manipulation 225
9.1 Character Codes and Character Data 225
9.2 Character Input/Output 230
9.3 Character Manipulation 231
9.3.1 Sorting Character Data 231
9.3.2 Finding Words 238
9.3.3 Finding Specific Substrings 245
10 Subprograms 251
10.1 Stack Operations 252
10.2 Simple Subprograms 257
10.3 Passing Parameters with a General Argument List 262
10.4 Passing Parameters in the Stack 269
10.5 Recursive Procedures 271
10.6 Subprogram Libraries 278
10.7 Subprograms and the Debugger 279
11 Macros and Conditional Assembly 287

11.1 Macro Parameters 288
11.1.1 Default Parameters 288
11.1.2 Keyword Parameters 289
11.1.3 String Parameters 290
11.1.4 Catenation of Parameters 290

12

13

14

Contents

11.2 Unique Symbol Generation 291

11.3 String Operations in Macros 294

11.4 Macro Libraries 295

11.5 Conditional Assembly 297
11.5.1 Repeat Loops 297
11.5.2 Values of Symbols of Parameters 298
11.5.3 List-directed Repeat Loops 299
11.5.4 Assembly-Time Selection Structures 301

11.6 More Directives 304

11.7 Recursive Macros 306

Floating-Point and Decimal Instructions 311

12.1 Single-Precision Floating-Point Data Type 312
12.1.1 Single-Precision Floating-Point Notation 312
12.1.2 Floating-Point Constant Notation 314
12.1.3 Floating-Point Non-Arithmetic Operations 316
12.1.4 Floating-Point Arithmetic Instructions 317

12.2 Additional Floating-Point Data Types 322

12.3 Errors with Floating-Point Operations 324

12.4 Dealing with Decimal Data 326
12.4.1 Decimal Data Formats 326
12.4.2 Instructions for Decimal Data 329
12.4.3 Conversion Instructions for Decimal Data 332

Bit and Logic Operations 341

13.1 Bit String Data 342

13.2 Branch Instructions for Bit Strings 342

13.3 Bit String Searching 345

13.4 Manipulating Bit Strings 347

13.5 Shift Instructions 351

13.6 Logic Operations 354

13.7 Unsigned Branch Instructions 361

VAX Input/Output 367

14.1 Overview of RMS 367

14.2 Control Blocks 369
14.2.1 Allocation of Space for Control Blocks 370
14.2.2 File-level Operations 372

XV

xvi Contents

14.2.3 Record-level Operations 372
14.3 Example Programs 374
14.4 Terminal Input/Output 379

15 Additional Features 385

15.1 Program Sections 386

15.2 Queues 388

15.3 Local Labels 393

15.4 Multiple-Selection Structures 394

15.5 Multiple-Precision Integer Arithmetic 395
15.6 Character Code Translation 397

15.7 The EDITPC Instruction 399

15.8 Memory Interlock 399

15.9 Odds and Ends 400

Appendix A A Simple Computer 405
Appendix B HEX/Decimal Conversion Table 437
Appendix C ASCII Codes 439

Appendix D Answers to Selected Problems 441
Appendix E Using the TPU Editor 447
Appendix F VAX Instruction Summary 455
Index 475

Ol 1

INTRODUCTION

1.1 The Evolution of Contemporary Computer Architecture
1.2 The Evolution of Computer Languages

1.3 Reasons to Study Assembly-Language Programming
14 The VAX Family of Computers

1.5 Why Study the VAX?

There are a few important preliminaries to a serious study of
assembly-language programming. The first two chapters and part of the third
chapter of this book cover the most important of these. Chapters 1 and 3 include
discussions of the fundamentals of the architecture of digital computers and their
operation. Chapter 2 covers the required information on nondecimal numbers
and the methods of storing integer data in a computer’s memory.

In this chapter we discuss the fundamentals of computers in rather general
terms. Included is a brief historical introduction to the development of the hard-
ware and architecture of contemporary computers, and also a brief discussion of
the early history of programming languages. With this background we can put
assembly language and the VAX family of computers in perspective. This chapter
also includes some reasons for studying assembly-language programming in
general, and the VAX architecture and assembly language in particular.

