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PREFACE

This book is intended to be used for the standard course on assembly language
programming, with the assumption that the reader has had at least one course in
high-level language programming.

Learning an assembly language has two related yet distinct benefits: the
acquisition of the skill of producing software in assembly language and gaining
an in-depth knowledge of the architecture of a particular computer.

In this book the VAX series of superminicomputers is presented as a vehicle
for discussing these two topics, because we believe that the VAX is particularly
suited to the study of assembly language. First, the VAX architecture represents
that of many other computers. The VAX instruction set includes many of the
features of the instruction sets of other computers. As a result, the assembly
languages of most other computers are easy to learn for those who know VAX
assembly language. The second advantage of studying VAX assembly language
lies in the complexity of the VAX architecture. The VAX has a rich set of instruc-
tions and addressing modes that make programming it in assembly language far
easier than on simpler computers. The obvious price of this higher degree of
writeability is the increased difficulty in learning the assembly language. How-
ever, the orthogonality of the VAX instruction set goes a long way toward bal-
ancing the increase in complexity with a measure of elegant simplicity.

Our approach to software development in assembly language is as follows.
A pseudocode solution to a given problem is created first. This pseudocode is
then translated, using consistent techniques, to an assembly language program.
The pseudocode is included as comments in the final program, providing docu-
mentation. This program design methodology is described in detail and used in
all example programs. This method, which is clearly a top-down approach,
results in well-structured programs that are reasonably easy to read, while sacri-
ficing very little in efficiency.

Macroinstructions are used for terminal input and output. This allows the
reader to write complete programs very early in the course. Getting such an early
start is important, because we believe that a significant amount of programming
experience is necessary to acquire the expertise to be an effective assembly lan-
guage programmer.
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Features of the Book

Program Examples

This book contains a large number of program examples, many of which are
complete stand-alone programs. Most of the complete examples are preceded by
pseudocode algorithms that describe their actions.

The VAX/VMS Debugger

There is an entire chapter devoted to the VAX/VMS Debugger. This chapter
describes the most useful debugger commands, including screen mode use of the
debugger. The complete text of a debugging session is also included.

Input/Output Macroinstructions

Macroinstructions for terminal input and output of three integer type values and
character strings, and also output for floating-point values, are used for the
example programs. The software package that provides these services also
includes a macro for dumping registers and memory. The method of obtaining
this software is described below.

Student Aids

Every chapter except the first has a summary, lists of new terms and new instruc-
tions, and a problem set. Nearly all of the problem sets have both programming
and nonprogramming exercises. We have included a description of all of the
nonprivileged VAX instructions. Instructors who feel that the entire instruction
set cannot be effectively covered in a course can choose sections to exclude
according to their tastes.

The VAX Record Management System

The book has a complete chapter on RMS, the VMS subsystem that the
VAX/VMS high-level languages use for input and output.
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An Alternative Introduction

Appendix A contains a chapter-length introduction to computer organization,
machine language, and assembly language programming. This appendix uses a
very simple and idealized computer named SIMCOM. The SIMCOM approach
to introducing the important concepts of this book is intended to be used for
classes in which the students have relatively weak backgrounds in computing
(for example, those who have not had a course in computer organization and
have never learned anything about instruction sets and low-level programming).

Instructional Software

Both the SIMCOM simulator and the VAX input/output package are available
through an anonymous FIP account from node HAPPY.UCCS.COLO-
RADO.EDU. The user id is ANONYMOUS and the password is GUEST. All of
the required files are in the directory named MACRO. For further information
about software please contact the author at the University of Colorado at Colo-
rado Springs or your local Benjamin/Cummings representative.

Using the Book in the Classroom

Chapter 1 contains background information on the evolution of computer archi-
tecture and computer languages, along with some justification for learning any
assembly language, and VAX assembly language in particular. Chapter 2 covers
the necessary material on binary and hexadecimal numbers, the addition and
subtraction operations on binary and hexadecimal numbers, number base con-
versions, and twos complement notation. Chapters 1 and 2 may be skipped by
classes whose students have some background in computer organization and
binary and hexadecimal arithmetic.

Most of the essential material of the book appears in Chapters 3-11. Chapter
3 first describes general computer architecture and CPU operation, and then
introduces the VAX architecture and a small collection of VAX instructions and
directives. The process of writing and running complete programs is also
described.

Chapter 4 introduces VAX assembly language implementations of the funda-
mental program control constructs. The methodology uses standard techniques
of implementing pseudocode versions of selection and looping structures.

vii
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Chapter 5 is a description of the VAX/VMS debugger, including its use in
screen mode. A complete debugging session on an example program is a signifi-
cant part of the chapter.

Chapter 6 introduces the other VAX integer data types, operand expressions,
and simple macros. Chapter 7 discusses the use of indexing for array processing
and the VAX implementation of indexing. Chapter 8 introduces the concept of
indirect addressing and covers the VAX addressing modes that implement it.

Chapter 9 describes the character manipulation instructions of the VAX and
how they can be used for programming solutions to simple problems.

Chapter 10 is a thorough discussion of VAX assembly language subpro-
grams, including the various parameter passing methods, recursion, and subpro-
gram libraries. Chapter 11 covers the remaining features of macros, along with all
of the VAX techniques for conditional assembly.

Chapter 12 describes VAX facilities for dealing with floating-point and deci-
mal data. Bit and logic instructions and their applications are discussed in Chap-
ter 13. Chapter 14 briefly describes the fundamental features of the RMS
input/output system of VAX/VMS.
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INTRODUCTION

1.1  The Evolution of Contemporary Computer Architecture
1.2 The Evolution of Computer Languages

1.3 Reasons to Study Assembly-Language Programming
14 The VAX Family of Computers

1.5 Why Study the VAX?

There are a few important preliminaries to a serious study of
assembly-language programming. The first two chapters and part of the third
chapter of this book cover the most important of these. Chapters 1 and 3 include
discussions of the fundamentals of the architecture of digital computers and their
operation. Chapter 2 covers the required information on nondecimal numbers
and the methods of storing integer data in a computer’s memory.

In this chapter we discuss the fundamentals of computers in rather general
terms. Included is a brief historical introduction to the development of the hard-
ware and architecture of contemporary computers, and also a brief discussion of
the early history of programming languages. With this background we can put
assembly language and the VAX family of computers in perspective. This chapter
also includes some reasons for studying assembly-language programming in
general, and the VAX architecture and assembly language in particular.



