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Preface

Misha Shubin made many seminal contributions to Spectral Theory and Geo-
metric Analysis. He is also an outstanding teacher: he directed nearly twenty
Ph.D. dissertations, and influenced many young mathematicians who were not his
students. His book Pseudodifferential Operators and Spectral Theory, written more
than 30 years ago, is still a standard textbook.

Mikhail Shubins 65th Birthday was celebrated at a conference titled Speciral
Theory and Geometric Analysis held at Northeastern University in Boston in the
summer of 2009. The speakers at this conference were leading mathematicians
working in Global Analysis. The call for papers for this volume went to all partic-
ipants of the conference.

We would like to thank the authors who contributed to this volume as well as
those who served as referees.

Maxim Braverman
Leonid Friedlander
Thomas Kappeler
Peter Kuchment
Peter Topalov
Jonathan Weitsman
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Volume 535, 2011

Resolution of smooth group actions

Pierre Albin and Richard Melrose

ABSTRACT. A refined form of the ‘Folk Theorem’ that a smooth action by
a compact Lie group can be (canonically) resolved, by iterated blow up, to
have unique isotropy type is proved in the context of manifolds with corners.
This procedure is shown to capture the simultaneous resolution of all isotropy
types in a ‘resolution structure’ consisting of equivariant iterated fibrations
of the boundary faces. This structure projects to give a similar resolution
structure for the quotient. In particular these results apply to give a canonical
resolution of the radial compactification, to a ball, of any finite dimensional
representation of a compact Lie group; such resolutions of the normal action
of the isotropy groups appear in the boundary fibers in the general case.

Introduction

Borel showed that if the isotropy groups of a smooth action by a compact Lie
group, G, on a compact manifold, M, are all conjugate then the orbit space, G\ M,
is smooth. Equivariant objects on M, for such an action, can then be understood
directly as objects on the quotient. In the case of a free action, which is to say
a principal G-bundle, Borel showed that the equivariant cohomology of M is then
naturally isomorphic to the cohomology of G\ M. In a companion paper, [1], this is
extended to the unique isotropy case to show that the equivariant cohomology of
M reduces to the cohomology of G\ M with coefficients in a flat bundle (the Borel
bundle). In this paper we show how, by resolution, a general smooth compact group
action on a compact manifold is related to an action with unique isotropy type on a
resolution, canonically associated to the given action, of the manifold to a compact
manifold with corners.

The resolution of a smooth Lie group action is discussed by Duistermaat and
Kolk [7] (which we follow quite closely), by Kawakubo [11] and by Wasserman
[13] but goes back at least as far as Janich [10], Hsiang [9], and Davis [6]. See
also the discussion by Briining, Kamber and Richardson [5] which appeared after
the present work was complete. In these approaches there are either residual finite
group actions, particularly reflections, as a consequence of the use of real projective
blow up or else the manifold is repeatedly doubled. Using radial blow up, and hence
working in the category of manifolds with corners, such problems do not arise.

2010 Mathematics Subject Classification. Primary 58D19, 57S15.
The first author was partially supported by an NSF postdoctoral fellowship and NSF grant
DMS-0635607002 and the second author received partial support under NSF grant DMS-1005944.



2 PIERRE ALBIN AND RICHARD MELROSE

For a general group action, M splits into various isotropy types
MEl = {¢eM: G¢ is conjugate to K}, Gc ={9g€G:9(=C(}, (€ M.

These are smooth manifolds but not necessarily closed and the orbit space is then
in general singular. We show below that each M!X] has a natural compactification
to a manifold with corners, Y|}, the boundary hypersurfaces of which carry equi-
variant fibrations with bases the compactifications of the isotropy types contained
in the closure of MX] and so corresponding to larger isotropy groups. Each fiber
of these fibrations is the canonical resolution of the normal action of the larger
isotropy group. These fibrations collectively give what we term a resolution struc-
ture, {(Y1,¢1); I € T}, the index set being the collection of conjugacy classes of
isotropy groups, i.e. of isotropy types, of the action. If M is connected there is
always a minimal ‘open’ isotropy type p € Z, for which the corresponding manifold,
Y, = Y (M), (possibly not connected) gives a resolution of the action on M. That
is, there is a smooth G-action on Y (M) with unique isotropy type and a smooth
G-equivariant map

(1) B:Y(M)— M

which is a diffeomorphism of the interior of Y (M) to the minimal isotropy type.
Here, [ is the iterated blow-down map for the resolution. There is a G-invariant
partition of the boundary hypersurfaces of Y (M) into non-self-intersecting collec-
tions Hj, labelled by the non-minimal isotropy types I € Z \ {u}, and carrying
G-equivariant fibrations

(2) ¢1 . HI P Y].
Here Y7 resolves the space M, the closure of the corresponding isotropy type M7,
3) Br:Yr — My, Bl =Brodr

Thus the inclusion relation between the M corresponding to the stratification
of M by isotropy types, is ‘resolved’ into the intersection relation between the Hj.
The resolution structure for M, thought of as the partition of the boundary hy-
persurfaces with each collection carrying a fibration, naturally induces a resolution
structure for each Y;. Since the fibrations are equivariant the quotients Z; of the
Y7 by the group action induce a similar resolution structure on the quotient Z (M)
of Y(M) which resolves the quotient, the orbit space, G\ M.

As noted above, in a companion paper [1], various cohomological consequences
of this construction are derived. The ‘lifts’ of both the equivariant cohomology and
equivariant K-theory of a manifold with a group action to its resolution structure
are described. These lifted descriptions then project to corresponding realizations
of these theories on the resolution structure for the quotient. As a consequence
of the forms of these resolved and projected theories a ‘delocalized’ equivariant
cohomology is defined, and shown to reduce to the cohomology of Baum, Brylinski
and MacPherson in the Abelian case in [3]. The equivariant Chern character is
then obtained from the usual Chern character by twisting with flat coefficients and
establishes an isomorphism between equivariant K-theory with complex coefficients
and delocalized equivariant cohomology. Applications to equivariant index theory
will be described in [2].

For the convenience of the reader a limited amount of background information
on manifolds with corners and blow up is included in the first two sections. The
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abstract notion of a resolution structure on a manifold with corners is discussed in
§3 and the basic properties of G-actions on manifolds with corners are described in
4. The standard results on tubes and collars are extended to this case in §5. In
§6 it is shown that for a general action the induced action on the set of boundary
hypersurfaces can be appropriately resolved. The canonical resolution itself is then
presented in §7, including some simple examples, and the induced resolution of the
orbit space is considered in §8. Finally §9 describes the resolution of an equivariant
embedding and the ‘relative’ resolution of the total space of an equivariant fibration.

The authors are grateful to Eckhard Meinrenken for very helpful comments on
the structure of group actions, and to an anonymous referee for remarks improving
the exposition.

1. Manifolds with corners

By a manifold with corners, M, we shall mean a topological manifold with
boundary with a covering by coordinate charts

(1.1) M=|]U;, F; :U; — Uj cR™* = [0,00)* x R™¢,
J

where the U; and U} are (relatively) open, the F; are homeomorphisms and the
transition maps

(1.2) Fy; : K(UinU;) — F(U;NU)), UinU; #0

are required to be smooth in the sense that all derivatives are bounded on compact
subsets; an additional condition is imposed below. The ring of smooth functions
C>®(M) C C°(M) is fixed by requiring (Fj_l)*(u|uj) to be smooth on U7, in the
sense that it is the restriction to U ]’ of a smooth function on an open subset of R™.

The part of the boundary of smooth codimension one, which is the union of
the inverse images under the F; of the corresponding parts of the boundary of
the R™¢ is dense in the boundary and the closure of each of its components is
a boundary hypersurface of M. More generally we shall call a finite union of non-
intersecting boundary hypersurfaces a collective boundary hypersurface. We shall
insist, as part of the definition of a manifold with corners, that these boundary hy-
persurfaces each be embedded, meaning near each point of each of these closed sets,
the set itself is given by the vanishing of a local smooth defining function z which
is otherwise positive and has non-vanishing differential at the point. In the absence
of this condition M is a tied manifold. Tt follows that each collective boundary
hypersurface, H, of a manifold with corners is globally the zero set of a smooth,
otherwise positive, boundary defining function ppy € C>°(M) with differential non-
zero on H; conversely H determines pg up to a positive smooth multiple. The set
of connected boundary hypersurfaces is denoted M;(M) and the boundary faces
of M are the components of the intersections of elements of M;(M). We denote
by M, (M) the set of boundary faces of codimension k. Thus if F' € My (M) and
F' € My,(M) then F N F’ can be identified with the union over the elements of a
subset (possibly empty of course) which we may denote F'NF’ C My (M). Once
again it is convenient to call a subset of M. (M) with non-intersecting elements a
collective boundary face, and then the collection of intersections of the elements of
two collective boundary faces is a collective boundary face.
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FIGURE 1. The square is a manifold with corners. The teardrop
is only a tied manifold since its boundary hypersurface intersects
itself.

By a manifold from now on we shall mean a manifold with corners, so the
qualifier will be omitted except where emphasis seems appropriate. The traditional
object will be called a boundaryless manifold.

As a consequence of the assumption that the boundary hypersurfaces are em-
bedded, each boundary face of M is itself a manifold with corners (for a tied
manifold the boundary hypersurfaces are more general objects, namely articulated
manifolds which have boundary faces identified). At each point of a manifold with
corners there are, by definition, local product coordinates x; > 0, y; where 1 <i < k
and 1 < j < m—k (and either k or m — k can be zero) and the x; define the bound-
ary hypersurfaces through the point. Unless otherwise stated, by local coordinates
we mean local product coordinates in this sense. The local product structure near
the boundary can be globalized:-

DEFINITION 1.1. On a compact manifold with corners, M, a boundary product
structure consists of a choice py € C*°(M) for each H € M;(M), of a defining
function for the each of the boundary hypersurfaces, an open neighborhood Uy C
M of each H € M;(M) and a smooth vector field Vi defined in each Uy such that

{1 inUg it K = H
Viapr =

(1.3) 0 inUynUgif K # H,

[VH,VK] =0inUgNUkgV H K € Ml(M)

Integration of each Vg from H gives a product decomposition of a neighborhood
of H as [0,exy] x H, eg > 0 in which Vy is differentiation in the parameter space
on which pg induces the coordinate. Shrinking Ugy allows it to be identified with
such a neighborhood without changing the other properties (1.3). Scaling py and
Vi allows the parameter range to be taken to be [0, 1] for each H.

PROPOSITION 1.2. Every compact manifold has a boundary product structure.

PRrOOF. The construction of the neighborhoods Uy and normal vector fields
Vg will be carried out inductively. For the inductive step it is convenient to consider
a strengthened hypothesis. Note first that the data in (1.3) induces corresponding
data on each boundary face F of M — where the hypersurfaces containing F' are
dropped, and for the remaining hypersurfaces the neighborhoods are intersected
with F and the vector fields are restricted to F' — to which they are necessarily
tangent. It may be necessary to subdivide the neighborhoods if the intersection
F N H has more than one component. In particular this gives data as in (1.3) but
with M replaced by F. So such data, with M replaced by one of its hypersurfaces,
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induces data on all boundary faces of that hypersurface. Data as in (1.3) on a
collection of boundary hypersurfaces of a manifold M, with the defining functions
pu fixed, is said to be consistent if all restrictions to a given boundary face of M
are the same.

Now, let B € M;(M) be a collection of boundary hypersurfaces of a man-
ifold M, on which boundary defining functions py have been chosen for each
H € M; (M), and suppose that neighborhoods Uk and vector fields Vi have been
found satisfying (1.3) for all K € B. If H € M;(M) \ B then we claim that there
is a choice of Vi and Uy such that (1.3) holds for all boundary hypersurfaces in
B U {H}, with the neighborhoods possibly shrunk. To see this we again proceed
inductively, by seeking Vi only on the elements of a subset B’ C B but consistent
on all common boundary faces. The subset B’ can always be increased, since the
addition of another element of B\ B’ to B’ requires the same inductive step but
in-lower overall dimension, which we can assume already proved. Thus we may
assume that Vg has been constructed consistently on all elements of B. Using the
vector fields Vi, each of which is defined in the neighborhood Uy of K, Vg can be
extended, locally uniquely, from the neighborhood of K N H in K on which it is
defined to a neighborhood of K N H in M by demanding

(1.4) Lv,.Va = [Vk,Va] =0.

The commutation condition and other identities follow from this and the fact that
they hold on K. Moreover, the fact that the Vi commute in the intersections
of the Uxg means that these extensions of Vy are consistent for different K on
their common domains. In this way Vg satisfying all conditions in (1.3) has been
constructed in a neighborhood of the part of the boundary of H in M corresponding
to B. In the complement of this part of the boundary one can certainly choose Vi
to satisfy Vgpy = 1 and combining these two choices using a partition of unity
(with two elements) gives the desired additional vector field Vi once the various
neighborhoods Uk are shrunk.

Thus, after a finite number of steps the commuting normal vector fields Vi are
constructed near each boundary hypersurface. i

Note that this result is equally true if in the definition the set of boundary hy-
persurfaces is replaced with any partition into collective boundary hypersurfaces,
however it is crucial that the different hypersurfaces in each collection do not in-
tersect.

The existence of such normal neighborhoods of the boundary hypersurfaces
ensures the existence of ‘product-type’ metrics. That is, one can choose a metric g
globally on M which near each boundary hypersurface H is of the form dp% +¢};hy
where ¢ : Uy — H is the projection along the integral curves of Vg and hy is
a metric, inductively of the same product-type, on H. Thus near a boundary face
F € My (M), which is defined by pg,, i = 1,...,k, the metric takes the form

k
(1.5) g=>_dpy, + drhr

i=1

where ¢ is the local projection onto F' with leaves the integral surfaces of the k
commuting vector fields Vy,. In particular
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COROLLARY 1.3. On any manifold with corners there exists a metric g, smooth
and non-degenerate up to all boundary faces, for which the boundary faces are each
totally geodesic.

A diffeomorphism of a manifold sends boundary faces to boundary faces — which
is to say there is an induced action on M;(M).

DEFINITION 1.4. A diffeomorphism F' of a manifold M is said to be boundary
intersection free if for each H € My (M) either F(H) = H or F(H)N H = (. More
generally a collection G of diffeomorphisms is said to be boundary intersection free
if M; (M) can be partitioned into collective boundary hypersurfaces B; € M;(M),
so the elements of each B; are disjoint, such that the induced action of each F' € G
preserves the partition, i.e. maps each B; to itself.

A manifold with corners, M, can always be realized as an embedded submani-
fold of a boundaryless manifold. As shown in [12], if 7 C M;(M) is any disjoint
collection of boundary hypersurfaces then the ‘double’ of M across F, meaning
2rM = M UM/ UF can be given (not however naturally) the structure of a
smooth manifold with corners. If {Fi,...F;} is a partition of the boundary of M
into disjoint collections, then it induces a partition {fg, i 6 fg} of the boundary of
27, M with one less element. After a finite number of steps, the iteratively doubled
manifold is boundaryless and M may be identified with the image of one of the
summands (see Theorem 4.2).

A

==
=]
w

A

FIGURE 2. After doubling the boundaries marked A and then dou-
bling the boundaries marked B we end up with a torus.

2. Blow up

A subset X C M of a manifold (with corners) is said to be a p-submanifold if
at each point of X there are local (product) coordinates for M such that X N U,
where U is the coordinate neighborhood, is the common zero set of a subset of the
coordinates. An interior p-submanifold is a p-submanifold no component of which
is contained in the boundary of M.

FIGURE 3. A horizontal line is an interior p-submanifold of the
square. The diagonal in a product of manifolds with boundary is
not a p-submanifold.
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A p-submanifold of a manifold is itself a manifold with corners, and the collar
neighborhood theorem holds in this context. Thus the normal bundle to X in M
has (for a boundary p-submanifold) a well-defined inward-pointing subset, forming
a submanifold with corners N* X C NX (defined by the non-negativity of all dpgy
which vanish on the submanifold near the point) and, as in the boundaryless case,
the exponential map, but here for a product-type metric, gives a diffeomorphism
of a neighborhood of the zero section with a neighborhood of X :

(2.1) T:Nt*X>U —UcM.

The radial vector field on N* X induces a vector field R near X which is tangent
to all boundary faces.

ProprosITION 2.1. If X is a closed p-submanifold in a compact manifold then
the boundary product structure in Proposition 1.2, for any choice of boundary

defining functions, can be chosen so that Vi is tangent to X unless X is contained
in H.

PRrROOF. The condition that the Vi be tangent to X can be carried along in
the inductive proof in Proposition 1.2, starting from the smallest boundary face
which meets X. a -

If X C M is a closed p-submanifold then the radial blow-up of M along X is a
well-defined manifold with corners [M; X] obtained from M by replacing X by the

inward-pointing part of its spherical normal bundle. It comes equipped with the
blow-down map

(2.2) [M; X]=STXU(M\X), 8:[M;X] — M.

The preimage of X, ST X, is the ‘front face’ of the blow up, denoted ff([M; X]).
The natural smooth structure on [M;X], with respect to which 3 is smooth, is
characterized by the additional condition that a radial vector field R for X, as

described above, lifts under j (i.e. is S-related) to pg Xg for a defining function pg
and normal vector field Xg for the new boundary introduced by the blow up.

7T
g/

FIGURE 4. Blowing up the origin in R? results in the manifold
with boundary [R?; {0}] = S' x R*. Polar coordinates around the
origin in R? yield local coordinates near the front face in [R?; {0}].

Except in the trivial cases that X = M or X € M; (M) the front face is a ‘new’
boundary hypersurface of [M; X|] and the preimages of the boundary hypersurfaces
of M are unions of the other boundary hypersurfaces of [M; X|; namely the lift of
H is naturally [H; X N H]. So, in the non-trivial cases and unless X separates some
boundary hypersurface into two components, there is a natural identification

(2.3) Mi([M; X]) = My (M) U {HE([M; X])}
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which corresponds to each boundary hypersurface of M having a unique ‘lift’ to
[M; X], as the boundary hypersurface which is the closure of the preimage of its
complement with respect to X. In local coordinates, blowing-up X corresponds to
introducing polar coordinates around X in M.

LEMMA 2.2. If X is a closed interior p-submanifold and M is equipped with
a boundary product structure in the sense of Proposition 1.2 the normal vector
fields of which are tangent to X then the radial vector field for X induced by the
exponential map of an associated product-type metric commutes with Vg near any
H € M1(M) which intersects X and on lifting to [M; X|, R = pg Xg where pg and
Xg, together with the lifts of the pg and Vg give a boundary product structure on
[M; X].

PrOOF. After blow up of X the radial vector field lifts to be of the form apg Vi
for any normal vector field and defining function for the front face, with a > 0. The
other product data lifts to product data for all the non-front faces of [M; X] and
this lifted data satisfies [R, V| = 0 near ff . Thus it is only necessary to show, using
an inductive argument as above, that one can choose pg to satisfy Vypg = 0 and
Rpg = pg in appropriate sets to conclude that R = pgVg as desired. 0O

3. Resolution structures

A fibration is a surjective smooth map ® : H — Y between manifolds with the
property that for each component of Y there is a manifold Z such that each point
p in that component has a neighborhood U for which there is a diffeomorphism
giving a commutative diagram with the projection onto U :

(3.1) . IO

\/

The pair (U, Fy) is a local trivialization of ®. Set codim(¢) = dim Z, which will
be assumed to be the same for all components of Y. The image of a boundary face
under a fibration must always be a boundary face (including the possibility of a
component of V).
LEMMA 3.1. Suppose ® : H — Y is a fibration with typical fiber Z.
i) If S C H is a closed p-submanifold transverse to the fibers of ®, then the
composition of ® with the blow-down map B : [H; S| — H is a fibration.
ii) If T CY is a closed interior p-submanifold, then ® lifts from H \ ®~1(T)
to a fibration #® : [H; ®~1(T)] — [Y;T).
REMARK 3.2. In the situation of ii), one may consider instead the pull-back
fibration
ByH —— H

L]
[Y;T]LY

where By H = {((,§) € Hx[Y;T] : ®(¢) = By (§)}. The natural map [H; &~ Y1) >

a — (Bu(a),®(a)) € By H is a diffeomorphlsm, showing that these fibrations
coincide.
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PROOF. i) Transversality ensures that ®(S) =Y and so <I>| s is itself a fibration,
say with typical fiber Zg. If (U, Fy) is a local trivialization of ® then since
[U X Z;U X Zs] =% [Z;Zs],

the diffeomorphism Fy; induces a diagram

(@I o " i (2076

\/

which shows that 5*® : [H; S] — H — Y is a fibration.

ii) Let (U, Fy) be a local trivialization of ® and Ty = T N U. The diffeomorphism
Fy identifies ®~}(U) with Z x U and ®~!(Tyy) with Z x Ty and so lifts to a
diffeomorphism Fy; of (8#®)~([U; Ty)) with Z x [U; Ty] = [Z x U; Z x Ty). Thus
([U; Ty), Fy) is a local trivialization for f#®,

(8#®)~1([U; Tv)) = » Z x [U; Ty]
k /
[U; Tu]
which shows that f#® : [H; & 1(T)] — [Y;T] is a fibration. O

The restriction of the blow-down map to the boundary hypersurface introduced
by the blow up of a p-submanifold is a fibration, just the bundle projection for the
(inward-pointing part of) the normal sphere bundle. In general repeated blow up
will destroy the fibration property of this map. However in the resolution of a G-
action the fibration condition persists. We put this into a slightly abstract setting
as follows.

DEFINITION 3.3. A resolution structure on a manifold M is a partition of
M; (M) into collective boundary hypersurfaces, each with a fibration, ¢p : H —
Yu with the consistency properties that if H; € My(M),i=1,2,and H1NHy # 0
then codim(¢g, ) # codim(¢p,) and

codim(¢py,) < codim(¢g,) =
ou, (H1 N Hy) € M1(Yw,), ¢u,(H1 N Hy) =Yy, and 3 a fibration
OH, Hy  Ou,(H1 N Hy) — YH2 giving a commutative diagram:

3.2 Hy
( ) HlﬂHg ¢H1(H10H2)

LEMMA 3.4. A resolution structure induces resolution structures on each of the
manifolds Y.

ProOF. Each boundary hypersurface F' of Yy is necessarily the image under
¢ of a unique boundary hypersurface of H, therefore consisting of a component
of some intersection H N K for K € M;(M). The condition (3.2) ensures that
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codim(¢y) < codim(¢g) and gives the fibration ¢pyx : F —> Yg. Thus for Yy
the bases of the fibrations of its boundary hypersurfaces are all the Yx’s with the
property that H N K # () and codim(¢g) < codim(¢k) with the fibrations being
the appropriate maps ¢, from (3.2).

Similarly the compatibility maps for the boundary fibration of Yy follow by
the analysis of the intersection of three boundary hypersurfaces H, K and J where
codim(¢gy) < codim(¢x) < codim(¢;). Any two intersecting boundary hyper-
surfaces of Yy must arise in this way, as ¢y(H N K) and ¢y(H N J) and the
compatibility map for them is ¢ k. a

If M carries a resolution structure then Lemma 3.1 shows that appropriately
placed submanifolds can be blown up and the resolution structure can be lifted.
Specifically we say that a manifold T' is transverse to the resolution structure if
either:

i) T is an interior p-submanifold of M, with dim 7" < dim M, that is trans-
verse to the fibers of ¢y for all H € M;(M), or

ii) 7T is an interior p-submanifold of Y7, for some L € M; (M), with dim T <
dim Y7, that is transverse to the fibers of ¢ for all N € M;(Y7).

Let T C M be equal to T in the first case and d)EI(T) in the second, then we have
the following result.

PROPOSITION 3.5. If M carries a resolution structure and 7' is a manifold
transverse to it, then [M;T] carries a resolution structure. In case ii) above, where
T C Yr, the resolution structure on [M ;¢21(T)] is obtained by blowing-up the
lift of T to every Yx that fibers over Y. In both cases, at each boundary face of
the new resolution structure the boundary fibration is either the pull-back of the
previous one along the blow-down map or the blow-down map itself.

Recall that submanifolds which do not intersect are included in the notion of
transversal intersection.

ProOF. Consider the two cases in the definition of transverse submanifold sep-

arately. (For clarity, we assume throughout the proof that the collective boundary
hypersurfaces in Definition 3.3 consist of a single boundary hypersurface.)
Case i). Let Br : [M; T] — M be the blow-down map. A boundary face of [M; T
is either the lift of a boundary face H € M; (M), in which case ¢y is a fibration
by Lemma 3.1 i), or it is the front face of the blow-up, in which case it carries the
fibration ﬂT| o Thus we only need to check the compatibility conditions.

The compatibility maps for the fibrations of the hypersurfaces of M clearly lift
to give compatibility maps for the lifts. Thus it is only necessary to check compat-
ibility between the fibrations on these lifted boundary hypersurfaces of [M;T] and
that of the front face. So, let H be a hypersurface of M that intersects 7'. In terms
of the notation above, the codimension of 87.¢x is the equal to dim Zy while the
codimension of ¢g is equal to dim Zy — dim Zg~7. The diagram (3.2) in this case
is

fN[H; HNT) 5 yHNT

¢a(HNT)=Yn.
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and so the requirements of Definition 3.3 are met.
Case ii). First note that the inverse image of a p-submanifold under a fibration
is again a p-submanifold since this is a local property and locally a fibration is a
projection. We denote by A7 : [M;¢;*(T)] — M the blow-down map and make
use of the notation in (3.2).

From the front face the map

f(M; 71 (D)) 25 971 (T) 2 T
is the composition of fibrations and so is itself a fibration.

Consider the lift of a boundary face H € M; (M) to a boundary face of [M;T).
IfHN ¢21(T) is empty then f7.¢x fibers over Yy and the compatibility conditions
are immediate. If H N ¢, '(T) is not empty and codim(¢y) < codim(¢y) then, by
Lemma 3.1, B¢ fibers over Yy and the arrows in the commutative diagrams

[HNL; Hﬂ¢L1(T)]$)[¢L HNL);¢(HNL)NT]

%%

BT¢L

and

fE([H; Hmj)Ll(T ¢>L(HnL

are all fibrations. Here, surjectivity of ¢, H| 1 (HAL)AT follows from the transver-
sality of T' to the fibers of ¢py. Since the lift of H meets the lift of L in [H N
L;H N ¢;*(T)] and meets the front face of [M;¢7 (T)] in f£([H; 67 (T) N H]),
these diagrams also establish the compatibility conditions for the lift of H.

Next if H N ¢;*(T) is not empty and codim(¢r) > codim(¢g), then Lemma
3.1 guarantees that the map 5# ¢n is a fibration from the lift of H to [Yg; ¢35 (T))
and that the arrows in the commutative diagrams

[HNL:HN 7 (T)] PEO8 16 (H N L) éu(H N L) NT]

% y

[Yz; T]

and

f([H; H 0 67\ (T >—@L—>ff[¢a<HnL ); 672 (T)])

are all fibrations.

Finally consider the lift of L. The map f#¢r, : [L; ¢ (T)] — [Y1;T) is a
fibration by Lemma 3.1 and the discussion above shows that it is compatible with




