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Preface

This book summarizes and highlights progress in our understanding of Dy-
namical Systems during six years of the German Priority Research Program
“Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems”.
The program was funded by the Deutsche Forschungsgemeinschaft (DFG)
and aimed at combining, focussing, and enhancing research efforts of active
groups in the field by cooperation on a federal level. The surveys in the book
are addressed to experts and non-experts in the mathematical community
alike. In addition they intend to convey the significance of the results for
applications far into the neighboring disciplines of Science.

Three fundamental topics in Dynamical Systems are at the core of our
research effort:

— behavior for large time
— dimension
— measure, and chaos

Each of these topics is, of course, a highly complex problem area in itself
and does not fit naturally into the deplorably traditional confines of any
of the disciplines of ergodic theory, analysis, or numerical analysis alone.
The necessity of mathematical cooperation between these three disciplines is
quite obvious when facing the formidable task of establishing a bidirectional
transfer which bridges the gap between deep, detailed theoretical insight and
relevant, specific applications. Both analysis and numerical analysis play a key
role when it comes to building that bridge. Some steps of our joint bridging
efforts are collected in this volume.

Neither our approach nor the presentations in this volume are monolithic.
Rather, like composite materials, the contributions are gaining strength and
versatility through the broad variety of interwoven concepts and mathemat-
ical methodologies which they span.

Fundamental concepts which are present in this volume include bifurca-
tion, homoclinicity, invariant sets and attractors, both in the autonomous
and nonautonomous situation. These concepts, at first sight, seem to mostly
address large time behavior, most amenable to methodologies of analysis.
Their intimate relation to concepts like (nonstrict) hyperbolicity, ergodicity,
entropy, stochasticity and control should become quite apparent, however,
when browsing through this volume.

The fundamental topic of dimension is similarly ubiquitous throughout
our articles. In analysis it figures, for example, as a rigorous reduction from
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infinite-dimensional settings like partial differential equations, to simpler infi-
nite-, finite- or even low-dimensional model equations, still bearing full rel-
evance to the original equations. But in numerical analysis — including and
transcending mere discretization — specific computational realization of such
reductions still poses challenges which are addressed here.

Another source of inspiration comes from very refined measure-theoretic
and dimensional concepts of ergodic theory which found their way into algo-
rithmic realizations presented here.

By no means do these few hints exhaust the conceptual span of the arti-
cles. It would be even more demanding to discuss the rich circle of methods, by
which the three fundamental topics of large time behavior, dimension, and
measure are tackled. In addition to SBR-measures, Perron-Frobenius type
transfer operators, Markov decompositions, Pesin theory, entropy, and Os-
eledets theorems, we address kneading invariants, fractal geometry and self-
similarity, complex analytic structure, the links between billiards and spectral
theory, Lyapunov exponents, and dimension estimates. Including Lyapunov-
Schmidt and center manifold reductions together with their Shilnikov and Lin
variants and their efficient numerical realizations, symmetry and orbit space
reductions together with closely related averaging methods, we may continue,
numerically, with invariant subspaces, Godunov type discretization schemes
for conservation laws with source terms, (compressed) visualization of com-
plicated and complex patterns of dynamics, and present an algorithm, GAIO,
which enables us to approximately compute, in low dimensions, objects like
SBR-measures and Perron-Frobenius type transfer operators. At which point
our cursory excursion through methodologies employed here closes up the
circle.

So much for the mathematical aspects. The range of applied issues, mostly
from physics but including some topics from the life sciences, can also be sum-
marized at most superficially, at this point. This range comprises such diverse
areas as crystallization and dendrite growth, the dynamo effect, and efficient
simulation of biomolecules. Fluid dynamics and reacting flows are addressed,
including the much studied contexts of Rayleigh-Bénard and Taylor-Couette
systems as well as the stability question of three-dimensional surface waves.
The Ginzburg-Landau and Swift-Hohenberg equations appear, for example,
as do mechanical problems involving friction, population biology, the spread
of infectious diseases, and quantum chaos. It is the diversity of these applied
fields which well reflects both the diversity and the power of the underlying
mathematical approach. Only composite materials enable a bridge to span
that far.

The broad scope of our program has manifested itself in many meetings,
conferences, and workshops. Suffice it to mention the workshop on “Entropy”
which was coorganized by Andreas Greven, Gerhard Keller, and Gerald War-
necke at Dresden in June 2000, jointly with the two neighboring DFG Priority
Research Programs “Analysis and Numerics for Conservation Laws” and “In-
teracting Stochastic Systems of High Complexity”. For further information
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concerning program and participants of the DFG Priority Research Program
“Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems”,
including a preprint server, see

— www.math.fu-berlin.de/~ danse/
For other DFG programs we refer to

— www.dfg.de
— www.dfg.de/aufgaben/Schwerpunktprogramme.html

At the end of this preface, I would like to thank at least some of the many
friends and colleagues who have helped on so many occasions to make this
program work. First of all, I would like to mention the members of the scien-
tific committee who have helped initiate the entire program and who have ac-
companied and shaped the scientific program throughout its funding period:
Ludwig Arnold, Hans-Giinther Bothe, Peter Deuflhard, Klaus Kirchgéssner,
and Stefan Miiller. The precarious conflict between great expectations and
finite funding was expertly balanced by our all-understanding referees Hans
Wilhelm Alt, Jiirgen Gértner, Frangois Ledrappier, Wilhelm N iethammer, Al-
brecht Pietsch, Gerhard Wanner, Harry Yserentant, Eberhard Zeidler, and
Eduard Zehnder. The hardships of finite funding as well as any remaining
administrative constraints were further alleviated as much as possible, and
beyond, by Robert Paul Kénigs and Bernhard Nunner, representing DFG
at its best. The www-services were designed, constantly expanded and im-
proved with unrivalled expertise and independence by Stefan Liebscher. And
Regina Lohr, as an aside to her numerous other secretarial activities and with
ever-lasting patience and friendliness, efficiently reduced the administrative
burden of the coordinator to occasional emails which consisted of no more
than “OK. BF”. Martin Peters and his team at Springer-Verlag ensured a
very smooth cooperation, including efficient assistance with all TEXnicalities.
But last, and above all, my thanks as a coordinator of this program go to
the authors of this volume and to all participants — principal investigators,
PostDocs and students alike — who have realized this program with their
contributions, their knowledge, their dedication, and their imagination.

Berlin, Bernold Fiedler
September 2000
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Random Attractors: Robustness, Numerics
and Chaotic Dynamics

Gunter Ochs*

Institut fiir Dynamische Systeme, Universitdt Bremen, Postfach 330440,
28334 Bremen, Germany

Abstract. In this article the numerical approximation of attractors and invariant
measures for random dynamical systems by using a box covering algorithm is dis-
cussed. We give a condition under which the algorithm, which defines a set valued
random dynamical system, possesses an attractor close to the attractor of the orig-
inal system. Furthermore, a general existence theorem for attractors for set valued
random dynamical systems is proved and criteria for the robustness of random at-
tractors under perturbations of the system are given. Our numerical algorithm is
applied to the stochastically forced Duffing oscillator, which supports for certain
parameter values a non—trivial random SRB measure.

1 Introduction

The qualitative behavior of an autonomous dynamical system given by the
iterations of a map or the solution of an ordinary differential equation (ODE)
is often characterized by invariant objects such as (global) attractors or in-
variant (probability) measures. Invariant measures describe the statistical
behavior of a dynamical system. An attractor is a compact invariant set,
which carries the asymptotic dynamics in the sense that it is approached
by all trajectories under time evolution. If a global attractor exists, then it
supports all invariant measures.

These “global objects” are particularly valuable in the investigation of
systems with complicated (“chaotic”) dynamical behavior, where reliable pre-
dictions for single trajectories are only possible for bounded time intervals.

Here we are interested in dynamics influenced by probabilistic noise.
A “traditional” approach is to model this by a Markov process. In this case
the evolution law of the system is given by transition probabilities instead
of a deterministic map. The statistical behavior of a Markov process is often
described by probability measures, which are invariant under the transition
probabilities.

However, we will work in the framework of random dynamical systems
(for a systematic presentation of this theory see [1]). A discrete time random
dynamical system is just given by the iteration of random mappings. Stochas-
tic differential equations (SDE’s) and random differential equations (which

* Project: The Multiplicative Ergodic Theorem under Discretization and Pertur-
bation (Ludwig Arnold and Wolfgang Krieger)



2 Gunter Ochs

are ODE’s with a randomly varying parameter) are generators of continuous
time random dynamical systems.

Tterations of iid mappings and SDE’s also define Markov processes. There
is a notion of invariant measures for random dynamical systems, which are
closely related to the invariant measures of the corresponding Markov process.
However, typically a random dynamical system has more invariant measures
than just these “Markov measures”. The theory of random dynamical systems
provides tools which allow a more detailed analysis of the dynamics than it
is possible in the framework of Markov processes. In some sense it is possible
to separate “noise driven dynamics” from “deterministic” dynamics.

There is a notion of a “pathwise” defined random attractor. That is, the
attractor is a (compact) set valued random variable defined on the proba-
bility space which models the noise, i.e. for (almost) every realization of the
stochastic process which models the noise there is a compact set. The dis-
tance between a trajectory with random initial condition and the attractor
converges to zero in probability if time tends to infinity.

Such an attractor moves (in a stationary manner) in the phase space of
the system under time evolution. This movement of the attractor can be
interpreted as the “noise induced part” of the dynamics. In addition, there is
some dynamics inside the attractor (which may be trivial). The qualitative
structure of this dynamics inside the attractor is often the same for (almost)
every noise realization. In this sense it can be viewed as the “deterministic
part” of the dynamics.

To be more precise, let us look at two examples. Take some self mappings
of a complete metric space, which are all uniform contractions. In every time
step choose randomly one of these mappings. Then the asymptotic behavior
of a trajectory is independent of the initial condition. This means, that the
“deterministic part” of the dynamics is trivial. The attractor consists of one
random point. However, if the mappings do not have a common fixed point,
then an observer sees non-—trivial dynamical behavior, which is in this case
exclusively due to the noise.

The situation is different for the randomly forced Duffing oscillator, which
will be discussed in more detail later on in this paper. There are parameter
values, where the system has a positive Lyapunov exponent, which leads
to sensitive dependence on initial conditions. Our numerical images of the
attractor and of the “natural” measure supported by it suggest that the dy-
namics of the system is a combination of “deterministic dynamics” which is
chaotic and “noise induced” movements in the phase space IR?.

For many random dynamical systems the existence of a random attractor,
which also implies the existence of invariant measures, is proved. However, in
many interesting cases it seems to be quite hard to obtain analytical results
on the structure of the attractor and the dynamics on it (the “deterministic
part”). This means that one often has to rely on numerical simulations in order
to obtain information about random attractors and invariant measures.
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In this article we will discuss a numerical method for the approxima-
tion of random attractors and (“natural”) invariant measures supported by
them. We consider a “global” approach in order-to approximate these global
objects. We use a random version of the subdivision algorithm which was
developed by Dellnitz and Hohmann [14,15] for the approximation of deter-
ministic attractors. This algorithm produces a sequence of box coverings of
the attractor.

The “random” subdivision algorithm is described in an article by Keller
and Ochs [25]. Its application to the stochastically perturbed Duffing-van der
Pol oscillator gave surprising new insight in the structure of the attractor.

A simplifying statement about the present paper would be that its content
is essentially a new convergence proof for this algorithm. However, on the
way to this proof we develop some tools which may be of interest for their
own. After giving fundamental definitions (Sect. 2) we introduce in Sect. 3
the notion of a set valued random dynamical system, where the image of
a point is a compact set instead of a single point. We define attractors for
set valued random dynamical systems and give a general criterion for their
existence based on the existence of an attracting set. This generalizes a often
used existence theorem for an attractor of a standard point valued random
dynamical system.

Using the notion of set valued random dynamical systems we give criteria
for robustness of random attractors under perturbations. In Sect. 4 we apply
these results to the “random” subdivision algorithm, which defines for a given
random dynamical system ¢ a sequence of set valued random dynamical
systems @ each of which possessing an attractor Ay (under an assumption
on @, see Corollary 26). We show that the intersection of all Ay is the global
attractor for (.

In addition (Sect. 4.2) we discuss a method for the numerical approx-
imation of “natural” invariant measures of random dynamical systems. In
the case of random dynamical systems generated by stochastic differential
equations these “natural” measures are related to invariant measures of the
corresponding Markov process.

In Sect. 5 we consider as an example the stochastically forced damped
Duffing oscillator. We prove the existence of a global attractor. There are pa-
rameters where the corresponding random dynamical system has a positive
Lyapunov exponent. This implies that the “natural” measure is a non—trivial
random Sinai-Ruelle-Bowen measure. We have calculated numerical approx-
imations of the attractor and of this measure. In addition we consider the
case when the top Lyapunov exponent is negative. Then the support of the
“natural” measure is a random one point set, but the global attractor seems
to be a larger set carrying some sort of “transient” chaotic dynamics.
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2 Preliminaries

2.1 Random Dynamical Systems

Definition 1. A (continuous) random dynamical system (RDS) consists of
two ingredients:

— A measure preserving flow ¥ = (9;):cT on a probability space ({2, F,1P),
which serves as a model for the noise. We always assume that ¥ is invert-
ible, i.e. T =R or Z.

— A measurable mapping

0 TH x2x X > X, (t,w,z)— @(t,w)

(with T* = {t € T : ¢t > 0}), where the state space X is a separable
metric space (with metric d), such that
e (t,z) = ¢(t,w)z is continuous for fixed w,
e ¢ satisfies the cocycle property ¢(0,w) = idx and ¢(t + s,w) =
©(s,9:w) 0 p(t,w) for t,s € T and w € 2.

We say ¢ is a random dynamical system on X over the metric dynamical
system (£2,9).

Remark 2. (i) The assumption that X is separable is for technical reasons.

(ii) In some definitions continuity is only required in space (i.e. =
¢(t,w)z is continuous for fixed ¢,w). However, continuity in time is auto-
matically true if T = Z and is also satisfied for continuous time random
dynamical systems generated by stochastic or random differential equations
(see Arnold [1, Chapter 2]).

(iii) Throughout this paper all assertions about w are assumed to hold on
a o invariant set of full measure (unless otherwise stated).

(iv) The cocycle property (which reduces to the flow property if ¢ is
independent of the noise w) implies, that the skew product

0=0,: T x2xX > 02xX, (t,w,z)— OF)(w,z):= (Vw, p(t, w)zx)

defines a measurable (semi-)flow on the product space 2 x X.

2.2 Generators

Iteration of Random Mappings. Let X be a metric space and Py a
probability measure on the space C(X, X) of continuous mappings from X
to itself. Set £2 := C(X, X)Z and let ¥ be the left shift on £2. Define IP := IPZ.
With ¢, = 9", p(w) = wy and

p(n,w) = p(P,_1w) o ... 0 p(w)
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for n > 1 a random dynamical system on X over (£2,9) is defined, which
models the iteration of iid mappings with distribution IPy,. More generally,
a random dynamical system is defined with every ¢ invariant probability
measure on {2.

If IP is concentrated on homeomorphisms, then ¢(n,w) is defined for n < 0
via

p(n,w) = p(@_pw) o .. op@ 1) h

In the same way a discrete time random dynamical system is generated
if we have an arbitrary metric dynamical system (§2,9) and a measurable
mapping ¢ : 2 — C(X, X).

Stochastic Differential Equations. Consider the Stratonovich SDE

dz = f(z)dt+_ gi(x) o dW;

i=1

on IR? with initial condition zo € IR? and functions f,9: : IR 5 RY for i =
L...,mand W = (Wy,... ,W,,) an m-dimensional Wiener process. If the
functions f, g; are sufficiently regular (see Theorem 2.3.36 in Arnold [1]) this
equation generates a local RDS ¢ over (£2,%), where 2 = Co(IR,IR™) is the
space of continuous functions w from IR to IR™ with w(0) = 0 (the path space
of the Wiener process) equipped with the canonical Wiener measure, and the
shift ¢ is defined by (%;w)(s) = w(s +t) — w(t) for all 5,¢ € R and w € 2.
Local means that ¢(t,w) z is only defined for 7~ (w,z) < t < 71 (w, ), where
—77,77 € (0,00] are the lifetimes of solutions before possible explosion. A
sufficient condition for ¢ being a global RDS without explosion is global
Lipschitz continuity of the functions f, g; (see Arnold [1, Theorem 2.3.32]).

Random Differential Equations. Here the generator of a continuous time
random dynamical system ¢ is a family of ODE’s with parameter w, which
can be solved “pathwise” for each w (in contrast to the SDE case) as a deter-
ministic non-autonomous ODE. That is, ¢ satisfies the integral equation

t
olt,w)e =z + / F (95, 0(s, w)a)ds,
0

where (£2,9) is any continuous time metric dynamical system and f is a
function from £2 x R? to R%.

We say that ¢ solves the random differential equation %(t) = f(dw, z(t)).
This pathwise differential equation is fulfilled if (t,z) — f(Ww,x) is con-
tinuous and = +— f(w,x) is Lipschitz. In this case we speak of a classical
solution. Otherwise the differential equation is a symbolic notation for the
corresponding integral equation. For general conditions on f which are needed
to generate a random dynamical system see [1, Theorems 2.2.1 and 2.2.2].
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2.3 Markov Processes

A (homogeneous) Markov process (see e.g. [I, Appendix A.4]) on X
is given by an initial probability distribution at time 0 and a family
(P(t,x,"))ser+ zex Of transition probabilities, i.e. P(t,z,-) is a probability
measure on X for every ¢ > 0, z € X. For a Borel set A C X the value
P(x,t, A) is the probability to end up in A at time s + ¢ if one starts in the
point z at time s. The “flow property” of a Markov process is the Chapman—
Kolmogorov equation

P(s+t,m,A)=/ P(s,y, A)P(t,z,dy).
x

If P(t,x,-) is a point mass in ¢z, then a Markov process reduces to a semi—
flow.

An invariant (or stationary) measure is a Borel probability measure p on
X with

p(4) = [ P(t.a. Adp(a).

A random dynamical system ¢ has independent increments, if ¢(t,-) and
o(u,Vs-) are stochastically independent if 0 < ¢ < s and u > 0. This is the
case if ¢ describes in discrete time the iteration of iid mappings or if ¢ is
generated by an SDE.

Every random dynamical system ¢ with independent increments defines
a Markov process with transition probabilities

P(t,z,A) = P(p(t,w)z € A).

2.4 Invariant Measures for Random Dynamical Systems

An invariant measure for the random dynamical system ¢ over (§2,9) is a
probability measure g on 2 x IR? with marginal mou = IP on 2, which is
invariant under the skew product ©(t).

If X is a standard measurable space (which is the case if X is a
Borel subset of its completion), than p has a disintegration dy(w,z) =
dp, (x)dIP(w), where (p,)wen is a family of probability measures on X
(IP-a.s. uniquely determined by p). The invariance condition then means
Pt w)pw = po,w P-as.

An ergodic invariant measure for a differentiable random dynamical sys-
tem (i.e. X is a smooth finite dimensional manifold and = — (¢, w)z is
differentiable) allows a “local” analysis of ¢ based on the multiplicative er-
godic theorem of Oseledets ([33], see also Arnold [1, Theorem 4.2.6]), which
provides a substitute of linear algebra. Exponential expansion rates for the
linearized system (Lyapunov exponents, which generalize the real parts of
eigenvalues; they are independent of w and the initial value if IP and p are



