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Foreword

The debate over how to teach calculus is almost as old as the subject itself.
Since World War II calculus enrollments have grown and diversified, re-
flecting university expansion and the increased use of mathematics in
science, technology, and social science. The intensified dialogue about
teaching can be seen in the accompanying plethora of calculus books.
They give weighty testimony to the fact that there is no secret formula for
teaching calculus.

There has been one very heartening development in recent years—the
serious questioning of the nature and use of a mathematics textbook. We
have discovered the student. We have come (rather late) to the realization
that the basic format of a scholarly treatise may not mesh so well with the
students’ learning process. If a text is essentially a sequence of lectures in
written form, then the plain and simple fact is that the average student
doesn’t read the text. He uses those parts of the book which provide
something not found in his classroom lectures.

Burton Rodin has written a text based on a realistic picture of the
day-to-day operations of many calculus instructors: they expound on the
conceptual material and on some of the problems, and share with their
students the constant frustration of insufficient time for the development
of technical skills. Rodin’s book contains a concise and rigorous de-
velopment of calculus as an intellectual discipline. In larger type, it
contains a parallel exposition which focuses on examples and technical
skills in a style which the student can work his way through. The writing
has the touch of a mathematician who is also a gifted and sensitive teacher.
A considerable number of calculus teachers should see in this book the
help which their students need.

Kenneth Hoffman
Cambridge, Massachusetts



Preface

ONE GOAL OF A CALCULUS COURSE is to teach routine problem solving and
computational skills. There are other goals as well. A calculus course
should impart an appreciation of the concepts and logical structure of the
subject, and it should show how ingenuity and careful analysis are needed
in handling nonroutine problems and applications.

The teaching of routine skills is the area in which a textbook can perform
its greatest service. This frees the instructor to spend more time on the
other goals mentioned above, where student-teacher interaction is so
essential. Therefore I have included a large number of examples to illus-
trate routine problem solving, and I have taken great care to make them
understandable to the student. In order to achieve this end about fifty
per cent of these examples are written in a style approaching Socratic
dialogue. This step-by-step, question-answer method is also intended to
teach students how to read mathematics. Their progress in this area is
tested by the final four chapters which are written in conventional style.

I have never found a formula for deciding, from a pedagogical point of
view, which theorems of calculus should be proved rigorously and which
ones should be presented only heuristically. The answer seems to depend
on the week-to-week interests and attitudes of each individual class. For
this reason I feel that the instructor alone can best decide when, and in
what amounts, the logical structure of calculus should be explained to his
students. I have presented a complete, rigorous development of these
theoretical aspects from which the instructor can conveniently select what
to explain in detail and what to describe only intuitively.

A large number of problems accompany each section. They range from
routine drills to challenging problems involving the theory and applications
of calculus. At the end of each chapter there is a collection of review



problems. Problems which are especially difficult or which treat peripheral
issues are designated with an asterisk (“starred problems”). Answers to
all odd-numbered problems, often accompanied by the method of solution,
are given following the problems.

This book begins immediately with integration rather than analytic
geometry and differentiation (or set theory and the completeness of the
real number system). The pedagogical advantages and disadvantages of
this approach have been discussed by mathematicians for decades and no
consensus has been reached. Personally, I finally came to favor this
“integration first” approach because I know of no better way to arouse the
student’s enthusiasm for the subject than to show them, on the very first
day of class, how to find the area under a parabola. In the succeeding weeks
of the course further accomplishments, significant and new in the students’
eyes, follow quickly. The students seem to develop a real feeling for the
Riemann integral and its uses. They also develop a faith in the power of
calculus which provides the motivation to carry them through subsequent
topics which are more difficult and have less immediate uses. Another
advantage of this approach is that it allows a gradual introduction to
limits; thus the Jimit of a sequence is the only limit notion used in Chapter 1.
Finally, it should be mentioned that this approach does no harm to
students who require an early grasp of calculus techniques for use in their
science courses. Since the user of this book gets into calculus immediately,
he develops the techniques for doing physics problems involving work and
acceleration faster than with most other texts.

This book covers all the material in a standard freshman-sophomore
calculus course of three or four semesters. Linear algebra plays an essential
role in the development, but always in a concrete setting; thus vectors are
introduced in Chapter 6 and used consistently thereafter. Linear and
affine transformations form the cornerstone of the treatment of multi-
variable calculus in Chapter 12. A great deal of high school review ma-
terial is included throughout the book. It occurs when needed, rather
than in a preliminary. chapter, so that the instructor can, if he wishes,
conveniently omit it from class work yet assign it for homework. The
chapters were arranged to treat the elementary aspects of multi-variable
calculus (Chapters 7 and 8) before the single-variable topics of Differential
Equations and Infinite Series (Chapters 10 and 11). If the instructor wishes
to cover all of the single-variable material before introducing functions of
several variables, this can be done by skipping Chapters 7 and 8, returning
to them immediately before beginning Chapter 12.

The final form of the example problems evolved from two years of class
testing. I wish to thank the following instructors who read or tested various
drafts of the manuscript and offered significant improvements: Professors
Terence Butler (Rutgers University), Larry Goldstein (Yale University),
Jerry Kazdan (University of Pennsylvania), Ed Landesman (University of
California), Alfred Manaster (University of California), George Pedrick
(Purdue University), Dave Ragozin (University of Washington), Nick
Rose (North Carolina State University), Rick Travis (Palm Beach Jr.
College), Jim Wahab (University of South Carolina), Paul Weichsel
(University of Illinois), Gill Williamson (University of California).



I was very fortunate during the writing of this book to have the help of a
distinguished teacher, Professor Herbert Gindler of San Diego State Col-
lege. All the good ideas in this book are an outgrowth of stimulating dis-
cussions we had together. The wisdom and wit of Professor Kenneth
Hoffman of M.LT. improved the manuscript immeasurably—it was a
great pleasure to work with him. James Walsh and Robert Martin of
Prentice-Hall contributed many excellent suggestions; I am grateful to
them for their inspired handling of this project. To Diane Dickey and
Edward Hendricks go my thanks for working the problems. I am indebted
to Juanita Rossé who typed a perfect manuscript.

Burton Rodin
La Jolla, California
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1

THE
RIEMANN
INTEGRAL

Summary: The first two
sections show how to calculate,
using a limit process, areas
bounded by the graphs of linear
and quadratic polynomials.

This leads to the precise notions
of limit of a sequence, Riemann
sum, and Riemann integral

given in Section 1-3. In Section 1-4
we derive the formula for
integrating x" and formulas
concerning the linearity of
integrals. These formulas are
applied to the calculation of areas
in Section 1-5, and of volumes in
Section 1-6. The final Section 1-7
treats some properties and uses
of continuous functions.



SECTION 1-1
APPROXIMATING AREAS

Summary: In this section we introduce the problem of finding the area between
the graph of a nonnegative function y = f(x) and the x-axis, for x in an interval
[a, b]. Although the problem is not solved completely, an approximate solution
is obtained which the student learns to write compactly in the form

Z:lf(fi)(xi — Xi—1).

Special Formulas (1-2), (1-3) are given to make this expression easy to evaluate
if f is a linear or quadratic polynomial. The concepts of function, graph, and
>--notation are reviewed.

1A Real numbers

DISCUSSION Nearly everything in calculus involves numbers. Let us
briefly discuss the properties you should know. You are expected, of
course, to be familiar with the arithmetic of the integers

ey =3,=2,-1,0,1,2,3,....

The rational numbers (or fractions) consist of all numbers of the form p/q
where p and g are integers (g # 0). You are also expected to be familiar
with the arithmetic of rational numbers, for example,

a ,c_ad+be  (a\(c)_ac,
b'd  bd b)\d)  bd

There are some numbers such as v/2, v/5, =, etc., which are not rational
numbers (see Problem 19 on page 90); they are called irrational numbers.

Observe that the rational numbers include the integers; for example
5 =15/1, —2 = —2/1, etc. The totality of all rational and irrational
numbers form the system of real numbers. Informally, the real number
system is often described as the set of all decimal numbers, including those
with infinitely long decimal expansions; for example,

% =133333..., T = 3.14159.. ., 2 = 2.00000....

What do we expect you to know about the real number system? First,
we assume you are familiar with the device of representing real numbers by
a number axis (see FIGURE 1-1). Note that we follow the convention of
placing positive numbers to the right of 0 and negative numbers to the left.
We assume that you are familiar with the order relation x < y (read “x
is less than y”); thus 0 < 1,2 < 3, —2 < 1, etc. Finally, we assume that

_ad,
~ be

EWEY SRS

Chapter 1. The Riemann integral



—V2=—1.414...

4/3=1.333...

| [/ |

7=3.14159...

Figure 1-1

you are familiar with the basic rules for manipulating algebraic expressions
and inequalities — we shall review these rules in detail as we need them
(Sections 1-3, 2-4).

In order to develop calculus rigorously it is necessary to state at the outset
precisely what properties of the real number system are assumed to be true.
First of all, we assume the simple algebraic properties listed on page 710 (the
Field Axioms). Secondly, we assume certain properties of the order relation
x < y. The precise properties we assume are:

() Ifx <yandy < zthen x < z.
) f x <ythenx +z<y+ z
(iii) If x < yand 0 < z then xz < yz.
(iv) Given x and y then exactly one of the following relations holds: x < y,
y<x,orx =y.

We make use of the notations

x=<y means x < yorx =y,
x>y means y < x,
X2y means X > yorx =y,

x=y=z means x <= yandy <.z,
x<y<z means x <yandy < z.

If x > 0 we say x is positive; if x = 0 we say x is nonnegative. In Section 1-3
we give a more detailed review of this subject of inequalities.

Thirdly, we shall make use of the so-called Completeness Property of the real
number system. You are not expected to be familiar with this property now.
The full force of it will not be needed until Section 1-7, and so we shall postpone
the statement of it until then. Meanwhile, we must assume the following special

case of the Completeness Property :

If n is a positive integer and if r is a positive number, then there is a unique
positive number x such that x» = r; we denote this number by /r.

It should be pointed out that on this theoretical level we need not assume
any properties of the geometric representation of numbers by a number axis.
The reason is that calculus can be developed rigorously without using any
notions from geometry. From the viewpoint of pure logic such a development
is to be preferred, since the number of assumptions made is thereby kept to a
minimum. Nevertheless, geometric interpretations and applications are ex-
tremely important for understanding calculus, and so we shall use them quite
often.

1B Functions and graphs

Let us briefly discuss the concept of function. From now on the word “number”’
will be used to mean “real number.”

Section 1-1: Approximating areas
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The abstract definition of function is this. Consider a collection of ordered
pairs of numbers; if (x, y) is such a pair, then we call x the first element of the
pair and y the second element. A collection of such ordered pairs is called a
function if it does not contain two pairs which have identical first elements and
distinct second elements; that is, it does not contain two pairs (x, y) and (x, y’)
where y # y’. Given such a collection, we define its domain to be the set of all
numbers x which appear as the first element of some ordered pair in that
collection.

If we are given a function and if x is a number in its domain, then there is a
definite number y such that (x, y) belongs to the function. We may express this
by saying that the function provides a rule for assigning to x the number y.
This point of view justifies the following common description of function: Let
D be a set of numbers. A rule which assigns to each number in D some definite
number is called a function, and D is called the domain of that function.

Let the letter f denote a function with domain D. If x is a number in D,
then f assigns a definite number to x. That number which f assigns to x is
denoted by f(x) [the symbol f(x) is read as “f of x”’].

EXAMPLE /-1 Let f be the function which assigns to each number its
square. Then fassigns to —3 the value 9. In symbols we write f(—3) = 9.
In general, to the number x the function fassigns the value x?; in symbols,
f(x) = x2. The domain of fis the set of all numbers because when we
defined f we said that it assigns to each number its square. Let us discuss
the reason f is really a function. To qualify as a function this f must
assign to the number x one and only one value. Since x? is a number and
its value is definitely determined by x, this rule f is actually a function.
(If you want to see a similar rule which does not define a function, look
at Example 1-2.) Answer the following questions concerning this func-

tion f. See page 728 for the correct answers. (A) f(1) =, f(—1) =
— O = , fV2) = , f() = . (B) What is f(x*)?
© f@+3)=_ . O Is fO+S0) =fG+5)?
(E) f@+b) — [f(@ + f(B)]=___ . (F) For what values of x do
we have f(x) =77 f(x)=-7?(G) f(f@) =, f(f(x) =

SO+ S+ +f6) =
WID F+/B 1 +,D 3+ §=

DCELEN

, (h 5 0).

EXAMPLE /-2 We now illustrate a rule which does not define a function.
Let g assign to each nonnegative number x any number whose square is
x. What value does g assign to the number 4? If your answer is 2 you
are correct. If your answer is —2 you are correct. Thus g does not assign
a definite value to each number in its domain. Hence g is not a func-
tion. Note that the equation g(x) = +/x does not describe the rule g
correctly, since v/x always means the nonnegative square root of x. It
would, however, be correct to write g(x) = +/x.

4 Chapter 1. The Riemann integral



EXAMPLE /-3 Often a rule is defined by simply writing down an alge-
braic expression involving one unknown quantity. This unknown is
called a variable. When we use this method to define a function, let us
always agree that the domain of the function shall consist of all numbers
for which the rule makes sense.

For example, let G be the rule G(x) = v/x. This means that the rule
G assigns to x the nonnegative square root of x. This rule makes sense
only if x is a nonnegative number, since v/x is not a number if x is nega-
tive. Thus by our agreement above, the domain of G consists of all

nonnegative numbers. (A) Is G a function? (B) G(0) =, G4) =
—,G@) =___. (C) What is G(a®) (careful!)? (D) Is G(3%2 + 42) =

3+ 4? (E) G(G(G(16))) = . (F) Let f(x) = x% What is f(G(5))?
What is G(f(—2))? (G) By rationalizing the numerator, simplify
G(x + h) — G(x)
h
multiply the numerator and denominator by G(x + &) + G(x)].

, (h #£ 0) [“rationalizing the numerator’” means to

EXAMPLE /-4 If x is any number, let [x] denote the largest integer
which is less than or equal to x. Thus [»] = 3, [5.6] =5, [5] =5,
[—1.5] = —2. If we define a rule f by f(x) = [x], then fis a function.
By our agreement, its domain consists of all numbers. This function f
cannot be expressed by means of a simple algebraic expression involving x.
During this course we shall come across many other functions which
cannot be defined by algebraic expressions.

EXAMPLE /-5 (In this example we present a function which is expressed
by two separate algebraic expressions.) A swimming pool is shaped so
that it is 30 feet wide, 45 feet long, 2 feet deep at the shallow end, and
7 feet deep at the deep end, the bottom being an inclined plane. (A) Sketch
the shape of the pool and draw in the proper dimensions.

The volume ¥ (in cubic feet) of water in the pool is a function of the
height 4 (in feet) of the water level above the deepest point of the pool.
Thus V(k) is the number of cubic feet of water in the pool when the sur-
face of the water is 4 feet above the bottom. Or to put it another way, V is
the rule which assigns to a number 4 the volume of water in this pool
when the depth of water at the deepest part of the pool is 4. In this
example the domain of V is the set of numbers A with0 < & < 7. (B) Find
the numerical value of. V' (5) by discovering on your own whatever formulas
you may need for the volumes of geometric solids. (C) If 5 < 2 = 7,
find a formula for V(4).

Using similar triangles, show that if 0 < 4 < 5 then

V(h) = ($)(30) (45 . g) h) (in cubic feet).

The function ¥ can be described in the form

135h? if 0=hs<5
Vih) = {1350}: 3375 if S=h=T

I\ TIA
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