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Preface

Biological membranes display a wealth of physical phenomena including
phase transitions, propagating voltage pulses, variable permeability, struc-
tural transitions (as seen in endo- and exocytosis), and domain formation that
is thought to have an important influence on signal cascades. The title of this
book “Thermal Physics of Membranes” indicates that it deals in particular
with the thermodynamics of such systems. Thermodynamics is always true
because it is based on only two basic and intuitive laws: the conservation of
energy and the maximum entropy principle. Beyond that it is free of any ap-
proximations and assumptions. One therefore finds thermodynamics as a ba-
sis for physics on all length scales from atomic dimensions up to cosmological
scales. Naturally, thermodynamics is also true on the level of biological mem-
branes. We wish to introduce the reader to some of these principles and their
consequences concerning the behavior of membranes. Important topics in this
book are “phase diagrams” including domain formation and rafts, elasticity
and the related changes in vesicular shape, pulse propagation, permeability
as well as protein binding and electrostatics.

Biology deals with complex ensembles of organic molecules including pro-
teins, nucleic acids, and lipids, but also salts and water. Proteins often display
unique molecular surfaces that give rise to specific interactions. Much of bio-
physical research therefore has been dedicated to the study of structures and
interactions between individual molecules. Cells and their compartments are
defined by a large variety of membranes that not only surround the cell as
a whole but also each organelle as the nucleus, mitochondria, or the endo-
plasmic reticulum. On average 50% of the biomembrane mass stems from
proteins. The human genome contains about 30,000 genes encoding at least as
many proteins, many or most of those being membrane proteins.

The major building blocks of membranes, however, are hundreds or thou-
sands of different lipid species. The human body contains several kg of mem-
brane lipids with a total surface on the order of 0.4 km? per kg. The plasma
membranes of one eucariot cell contains about 10'° lipid molecules. Although
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Preface

the diversity of lipids is seemingly smaller than that of proteins, lipid mem-
branes contain many molecules and are thus large ensembles.

Biological molecules usually do not only interact with one specific bind-
ing partner but also with the abundant lipid surfaces, with protons (because
macromolecules contain protonable groups), ions and, very importantly, with
water. Therefore one typically deals not with one interaction but rather with
many. Even if only a few of these interactions have a strength that is of inter-
est and even if one takes into account that one cell usually does not express all
the proteins that are encoded in the genome, it is immediately obvious that it
is a impossible to investigate all possible interactions. One further has to take
into account that the molecules may have different orientations and different
conformations further increasing the complexity. We leave it to the reader to
figure out how many different arrangements of, say, 200 lipid species in vari-
able concentrations and conformations in an ensemble of 10! molecules are
possible—but the number is beyond any range that can ever be accessed by
computers. One must come to the conclusion that life will never be under-
stood on the basis of binary molecular interactions alone. In particular, many
cooperative phenomena such as the melting of lipid membranes are beyond
the scope of single molecule physics.

Thermodynamics is a fundamental discipline of physics that describes the
behavior of assemblies of molecules. It solely relies on two basic principles:
the law of the conservation of energy (first law) and the seemingly tautolog-
ical principle that a most likely state exists that is assumed with the highest
probability (second law). The latter principle is also known as the principle
of maximum entropy. These two principles are so general and universal that
the thermodynamic relations that are derived from them are also fundamen-
tally true. In the case of biological systems, the variety of proteins, lipids,
and ions is taken into account by their chemical potentials that are a function
of the concentrations of other molecules as well as of temperature, pressure,
voltage, or other intensive variables. In thermal equilibrium a multimolecular
ensemble like a membrane fluctuates around the state of maximum entropy.
If the system is not in equilibrium, the first derivative of the entropy consti-
tutes the thermodynamic forces, which are the forces that drive a system back
to equilibrium. The second derivatives of the entropy are related to suscep-
tibilities, for example, to the heat capacity or the elastic constants of mem-
branes. These properties of membranes are often easier to measure, for exam-
ple with calorimeters (heat capacity), ultrasonic velocity measurements (vol-
ume compressibility) or by vesicular shape fluctuations (bending elasticity).
Even though in thermal equilibrium the thermodynamics forces are zero, the
susceptibilities generally assume nonzero values. Since the different suscep-
tibilities are all second derivatives of the same thermodynamic function (the
entropy), they are not independent of each other, but one can find surprising



Preface

relationships between various thermodynamic susceptibilities that can pro-
vide insights into the behavior of membranes that one would never be able to
predict on the basis of single molecule interactions. Many such relations stem
from the so-called Maxwell relation. We show two examples:

ds av
il =—(Z= 0.1
(dp)T,ni (dT>p,ni ( )

where S and V are the entropy and the volume of an ensemble, respectively,
including all their proteins and lipids—and all their conformations. This equa-
tion implies that the term on the left-hand side that is experimentally difficult
to access is identical to the volume expansion coefficient that is very easy to
measure. A second example is

2 du:
(%) _ (d_"f> (0.2)
& S,V iy AL

This relation couples the chemical potential of one component to the variation
of another and demonstrates the symmetry of the coupling. In biochemical
textbooks such couplings usually do not play a role. This implies that the
findings shown in such books are not necessarily incorrect but definitely in-
complete. However, there are also examples where the molecular textbook
models are clearly in conflict with the laws of thermodynamics. The applica-
tion of thermodynamics therefore should not be considered as a method aver-
aging out the molecular details (and thereby losing information) but rather as
a means to gain considerable insight into all the couplings between seemingly
different processes.

In this textbook we will introduce the reader to the thermodynamic con-
cepts. Overall, our intention is to show the beautiful manner by which ther-
modynamics can link seemingly unrelated membrane processes resulting in a
unified picture of the behavior of membranes as a whole. Our aim therefore
is to present a coherent concept rather than achieving a complete presentation
of the field. This approach takes the risk that important results of respected
colleagues are not presented to the extent that they deserve.

Copenhagen, April 2007 Thomas Heimburg
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1
Membranes—An Introduction

In the second half of the 19th century it became evident that an osmotic bar-
rier separates the inside and the outside of cells (Négeli and Cramer, 1855;
de Vries, 1871, 1884; Pfeffer, 1877). Plant cell protoplasts were permeable to
water but not to larger macromolecules like sucrose (de Vries, 1871). Pfeffer
was the first to study the osmotic pressure within cells and formulated the
idea that the protoplasm of cells is surrounded by a thin layer, which he called
the plasma membrane. In fact, Pfeffer proposed that this membrane does not
only cover the outer surface of cells but also separates all aqueous environ-
ments of different composition from each other. One may therefore consider
Pfeffer as the father of membrane theory. The developments in biology and
botany coincided with a rapid development in the theory of thermodynam-
ics of solutions. In particular, based on Pfeffer’s work van’t Hoff found the
formal analogy of concentrations of solutes in water and the partial pressures
of ideal gases (van’t Hoff, 1887). Ostwald formulated descriptions for the os-
motic pressure across semipermeable walls and the related electrical proper-
ties (Ostwald, 1887, 1890).!

1.1
Overton (1895)

Charles Ernest Overton is a very important figure in the development of a pic-
ture of cell membranes. He investigated the osmotic properties of cells and no-
ticed in the late 19th century that the permeation of molecules through mem-
branes is related to their partition coefficient between water and oil (Overton,
1895). Overton’s findings led to the hypothesis that the thin membranes sur-
rounding cells have the properties of oil. In his book on anesthesia (Over-
ton, 1901. Jena, Germany. English translation: Studies of Narcosis, Chapman
and Hall, 1991, R. Lipnick, Ed., 1991) he called the layers surrounding cells
“lipoids” made from lipids and cholesterol. The properties of lipids are de-
scribed in detail in Chapter 3 and theory of anesthesia is treated in Chapter 19.

1) The history of biomembrane research is nicely reviewed in Ling
(2001).
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1 Membranes—An Introduction

1.2
Langmuir (1917) and Gorter and Grendel (1925)

Langmuir (1917) developed an apparatus in which molecular layers of lipids
were spread at the air-water interface. With this monolayer trough (see Sec-
tion 6.7 and Fig. 6.14) the lateral pressure of the monolayer films could be mea-
sured. Langmuir proposed that in the molecular film the polar head groups
were directed toward the water whereas the hydrophobic hydrocarbons are
pointed toward the air phase.

Gorter and Grendel (1925) experimentally investigated the surface area of
lipids. For this purpose they extracted the lipids from red blood cells of man,
dog, rabbit, sheep, guinea pig, and goat in acetone. The lipids were spread
on a water surface and the area was measured using a Langmuir film balance.
From the same blood preparations they measured the surface area of the red
blood cells from the microscopic images. They found that the surface area of
the monofilms was within error exactly two times that of the cells. They con-
cluded that cell membranes are made of two opposing thin molecular layers,
and they proposed that this double layer is constructed such that two lipid
layers form a bilayer with the polar head groups pointing toward the aqueous
environment (Fig. 1.1). This is the picture of the lipid membrane we know to-
day. As Robertson (1959) noted later, the attractive simplicity of Gorter’s and
Grendel’s pictures is also its greatest weakness since it fails to account for the
manifold of functions attributed to cell membranes.

mmmmm -
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Fig. 1.1 The cell membrane according to Gorter and Grendel (1925).
They proposed the lipid bilayer structure.

1.3
Danielli and Davson (1935)

The earliest molecular model for the biomembrane structure including pro-
teins was the model from Danielli and Davson (1935). They took into account
that the layers surrounding cells had a significant content of proteins adsorbed



